ABSTRACT:Purpose Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood–brain barrier (BBB) and ultimate evaluation of their neuroprotective effects.Methods BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC–MSn. BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. Results Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. Conclusions BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.
KEY WORDS:Blackberry · In vitro digestion · Neuronal cells · Brain endothelial cells · Microarrays
参考文献:
1. Williams RJ, Spencer JP (2011) Flavonoids, cognition, anddementia: actions, mechanisms, and potential therapeutic utilityfor Alzheimer disease. Free Radic Biol Med 52(1):35–45. https://doi.org/10.1016/j.freeradbiomed.2011.09.010
2. Miller MG, Shukitt-Hale B (2012) Berry fruit enhances beneficialsignaling in the brain. J Agric Food Chem 60(23):5709–5715.https://doi.org/10.1021/jf2036033
3. Garcia G, Nanni S, Figueira I, Ivanov I, McDougall GJ, StewartD, Ferreira RB, Pinto P, Silva RF, Brites D, Santos CN (2017)Bioaccessible (poly)phenol metabolites from raspberry protectneural cells from oxidative stress and attenuate microglia activation.Food Chem 215:274–283. https://doi.org/10.1016/j.foodchem.2016.07.128
4. Shukitt-Hale B, Cheng V, Joseph JA (2009) Effects of blackberrieson motor and cognitive function in aged rats. Nutr Neurosci12(3):135–140. https://doi.org/10.1179/147683009X423292
5. Ramassamy C (2006) Emerging role of polyphenolic compoundsin the treatment of neurodegenerative diseases: a review of theirintracellular targets. Eur J Pharmacol 545(1):51–64. https://doi.org/10.1016/j.ejphar.2006.06.025
6. Virgili F, Marino M (2008) Regulation of cellular signals fromnutritional molecules: a specific role for phytochemicals, beyondantioxidant activity. Free Radic Biol Med 45(9):1205–1216.https://doi.org/10.1016/j.freeradbiomed.2008.08.001
7. Day AJ, Canada FJ, Diaz JC, Kroon PA, McLauchlan R, FauldsCB, Plumb GW, Morgan MR, Williamson G (2000) Dietary flavonoidand isoflavone glycosides are hydrolysed by the lactasesite of lactase phlorizin hydrolase. FEBS Lett 468(2–3):166–170doi:S0014-5793(00)01211-4
8. Gee JM, DuPont MS, Day AJ, Plumb GW, Williamson G, JohnsonIT (2000) Intestinal transport of quercetin glycosides in ratsinvolves both deglycosylation and interaction with the hexosetransport pathway. J Nutr 130(11):2765–2771
9. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004)Polyphenols: food sources and bioavailability. Am J Clin Nutr79(5):727–747
10. Williamson G, Clifford MN (2010) Colonic metabolites ofberry polyphenols: the missing link to biological activity?Br J Nutr 104(Suppl 3):S48–S66. https://doi.org/10.1017/S0007114510003946
11. Rangel-Ordonez L, Noldner M, Schubert-Zsilavecz M, WurglicsM (2010) Plasma levels and distribution of flavonoids in rat brainafter single and repeated doses of standardized Ginkgo bilobaextract EGb 761®. Planta Med 76(15):1683–1690. https://doi.org/10.1055/s-0030-1249962
12. Ho L, Ferruzzi MG, Janle EM, Wang J, Gong B, Chen TY, LoboJ, Cooper B, Wu QL, Talcott ST, Percival SS, Simon JE, PasinettiGM (2012) Identification of brain-targeted bioactive dietaryquercetin-3-O-glucuronide as a novel intervention for Alzheimer’sdisease. FASEB J 27(2):769–781. https://doi.org/10.1096/fj.12-212118
13. Ishisaka A, Mukai R, Terao J, Shibata N, Kawai Y (2014) Specificlocalization of quercetin-3-O-glucuronide in human brain.Arch Biochem Biophys 557:11–17. https://doi.org/10.1016/j.abb.2014.05.02514. Gasperotti M, Passamonti S, Tramer F, Masuero D, Guella G,Mattivi F, Vrhovsek U (2015) Fate of microbial metabolites ofdietary polyphenols in rats: is the brain their target destination?ACS Chem Neurosci 6(8):1341–1352. https://doi.org/10.1021/acschemneuro.5b00051
15. Fornasaro S, Ziberna L, Gasperotti M, Tramer F, Vrhovsek U,Mattivi F, Passamonti S (2016) Determination of cyanidin 3-glucosidein rat brain, liver and kidneys by UPLC/MS-MS andits application to a short-term pharmacokinetic study. Sci Rep6:22815. https://doi.org/10.1038/srep22815
16. McDougall GJ, Fyffe S, Dobson P, Stewart D (2005) Anthocyaninsfrom red wine—their stability under simulated gastrointestinaldigestion. Phytochemistry 66(21):2540–2548. https://doi.org/10.1016/j.phytochem.2005.09.003
17. Tavares L, Figueira I, McDougall G, Vieira HA, Stewart D, AlvesP, Ferreira R, Santos C (2013) Neuroprotective effects of digestedpolyphenols from wild blackberry species. Eur J Nutr 52(1):225–236. https://doi.org/10.1007/s00394-012-0307-7
18. Macedo D, Tavares L, McDougall GJ, Vicente Miranda H, StewartD, Ferreira RB, Tenreiro S, Outeiro TF, Santos CN (2015) Poly)phenols protect from alpha-synuclein toxicity by reducing oxidativestress and promoting autophagy. Hum Mol Genet 24(6):1717–1732. https://doi.org/10.1093/hmg/ddu585
19. Pimpao RC, Dew T, Oliveira PB, Williamson G, Ferreira RB,Santos CN (2013) Analysis of phenolic compounds in Portuguesewild and commercial berries after multienzyme hydrolysis. JAgric Food Chem 61(17):4053–4062. https://doi.org/10.1021/jf305498j
20. Tavares L, Carrilho D, Tyagi M, Barata D, Serra AT, Duarte CM,Duarte RO, Feliciano RP, Bronze MR, Chicau P, Espirito-SantoMD, Ferreira RB, dos Santos CN (2010) Antioxidant capacityof Macaronesian traditional medicinal plants. Molecules15(4):2576–2592. https://doi.org/10.3390/molecules15042576
21. Stins MF, Badger J, Sik Kim K (2001) Bacterial invasion andtranscytosis in transfected human brain microvascular endothelialcells. Microb Pathog 30(1):19–28. https://doi.org/10.1006/mpat.2000.0406
22. Palmela I, Sasaki H, Cardoso FL, Kim KS, Brites D, Brito MA(2012) Time-dependent dual effects of high levels of unconjugatedbilirubin on the human blood–brain barrier lining. Front Cell Neurosci6. https://doi.org/10.3389/fncel.2012.00022
23. Tavares L, Figueira I, Macedo D, McDougall GJ, Leitão MC,Vieira HLA, Stewart D, Alves PM, Ferreira RB, Santos CN(2012) Neuroprotective effect of blackberry (Rubus sp.) polyphenolsis potentiated after simulated gastrointestinal digestion.Food Chem 131(4):1443–1452. https://doi.org/10.1016/j.foodchem.2011.10.025
24. Gomes A, Pimpão RC, Fortalezas S, Figueira I, Miguel C, AguiarC, Salgueiro L, Cavaleiro C, Gonçalves MJ, Clemente A, Costa C,Martins-Loução MA, Ferreira RB, Santos CN (2015) Chemicalcharacterization and bioactivity of phytochemicals from Iberianendemic Santolina semidentata and strategies for ex situ propagation.Ind Crops Prod 74:505–513. https://doi.org/10.1016/j.indcrop.2015.04.037
25. Terrasso AP, Pinto C, Serra M, Filipe A, Almeida S, FerreiraAL, Pedroso P, Brito C, Alves PM (2015) Novel scalable 3D cellbased model for in vitro neurotoxicity testing: combining humandifferentiated neurospheres with gene expression and functionalendpoints. J Biotechnol 205:82–92. https://doi.org/10.1016/j.jbiotec.2014.12.011
26. Terrasso AP, Silva AC, Filipe A, Pedroso P, Ferreira AL, AlvesPM, Brito C (2017) Human neuron-astrocyte 3D co-culturebasedassay for evaluation of neuroprotective compounds. JPharmacol Toxicol Methods 83:72–79. https://doi.org/10.1016/j.vascn.2016.10.001
27. Vieira HL, Queiroga CS, Alves PM (2008) Pre-conditioninginduced by carbon monoxide provides neuronal protectionagainst apoptosis. J Neurochem 107(2):375–384. https://doi.org/10.1111/j.1471-4159.2008.05610.x
28. Tavares L, Alves PM, Ferreira RB, Santos CN (2011) Comparisonof different methods for DNA-free RNA isolation fromSK-N-MC neuroblastoma. BMC Res Notes 4:3. https://doi.org/10.1186/1756-0500-4-3
29. Brito C, Simão D, Costa I, Malpique R, Pereira CI, Fernandes P,Serra M, Schwarz SC, Schwarz J, Kremer EJ, Alves PM (2012)Generation and genetic modification of 3D cultures of humandopaminergic neurons derived from neural progenitor cells. Methods56(3):452–460. https://doi.org/10.1016/j.ymeth.2012.03.005
30. Livak KJ, Schmittgen TD (2001) Analysis of Relative geneexpression data using real-time quantitative PCR and the 2–DDCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
31. Palmela I, Cardoso FL, Bernas M, Correia L, Vaz AR, Silva RFM,Fernandes A, Kim KS, Brites D, Brito MA (2011) Elevated Levelsof bilirubin and long-term exposure impair human brain microvascularendothelial cell integrity. Curr Neurovasc Res 8(2):153–169.https://doi.org/10.2174/156720211795495358
32. Eigenmann DE, Xue G, Kim KS, Moses AV, HamburgerM, Oufir M (2013) Comparative study of four immortalizedhuman brain capillary endothelial cell lines, hCMEC/D3,hBMEC, TY10, and BB19, and optimization of culture conditions,for an in vitro blood–brain barrier model for drug permeabilitystudies. Fluids Barriers CNS 10(1):1–17. https://doi.org/10.1186/2045-8118-10-33
33. Eigenmann DE, Jähne EA, Smieško M, Hamburger M, Oufir M(2015) Validation of an immortalized human (hBMEC) in vitroblood–brain barrier model. Anal Bioanal Chem 408(8):2095–2107. https://doi.org/10.1007/s00216-016-9313-6
34. Ishisaka A, Ichikawa S, Sakakibara H, Piskula MK, Nakamura T,Kato Y, Ito M, Miyamoto K-i, Tsuji A, Kawai Y, Terao J (2011)Accumulation of orally administered quercetin in brain tissue andits antioxidative effects in rats. Free Radic Biol Med 51(7):1329–1336. https://doi.org/10.1016/j.freeradbiomed.2011.06.017
35. Bohn T, McDougall GJ, Alegria A, Alminger M, Arrigoni E,Aura AM, Brito C, Cilla A, El SN, Karakaya S, Martinez-CuestaMC, Santos CN (2015) Mind the gap-deficits in our knowledgeof aspects impacting the bioavailability of phytochemicals andtheir metabolites—a position paper focusing on carotenoids andpolyphenols. Mol Nutr Food Res 59(7):1307–1323. https://doi.org/10.1002/mnfr.201400745
36. Marques Peixoto F, Fernandes I, Gouvêa ACMS, Santiago MCPA,Galhardo Borguini R, Mateus N, Freitas V, Godoy RLO, FerreiraIMPLVO (2016) Simulation of in vitro digestion coupledto gastric and intestinal transport models to estimate absorptionof anthocyanins from peel powder of jabuticaba, jamelão andjambo fruits. J Funct Foods 24:373–381. https://doi.org/10.1016/j.jff.2016.04.021
37. McDougall GJ, Conner S, Pereira-Caro G, Gonzalez-Barrio R,Brown EM, Verrall S, Stewart D, Moffet T, Ibars M, LawtherR, O’Connor G, Rowland I, Crozier A, Gill CI (2014) Tracking(poly)phenol components from raspberries in ileal fluid. J AgricFood Chem 62(30):7631–7641. https://doi.org/10.1021/jf502259j
38. Figueira I, Menezes R, Macedo D, Costa I, Santos CNd (2017)Polyphenols beyond barriers: a glimpse into the brain. CurrNeuropharmacol 15(4):562–594. https://doi.org/10.2174/1570159X14666161026151545
39. Figueira I, Garcia G, Pimpao RC, Terrasso AP, Costa I, AlmeidaAF, Tavares L, Pais TF, Pinto P, Ventura MR, Filipe A, McDougallGJ, Stewart D, Kim KS, Palmela I, Brites D, Brito MA,Brito C, Santos CN (2017) Polyphenols journey throughblood–brain barrier towards neuronal protection. Sci Rep 7(11456). https://doi.org/10.1038/s41598-017-11512-6
40. Ghersi-Egea JF, Leninger-Muller B, Suleman G, Siest G,Minn A (1994) Localization of drug-metabolizing enzymeactivities to blood–brain interfaces and circumventricularorgans. J Neurochem 62(3):1089–1096. https://doi.org/10.1046/j.1471-4159.1994.62031089.x
41. Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S,Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, CouraudP-O, Terasaki T, Scherrmann J-M (2011) Transcriptomic andquantitative proteomic analysis of transporters and drug metabolizingenzymes in freshly isolated human brain microvessels.Mol Pharm 8(4):1332–1341. https://doi.org/10.1021/mp200129p
42. Agúndez JAG, Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E (2014) Drug and xenobiotic biotransformation in theblood–brain barrier: a neglected issue. Front Cell Neurosci 8:335.https://doi.org/10.3389/fncel.2014.00335
43. Chen C, Zhou J, Ji C (2010) Quercetin: a potential drug to reversemultidrug resistance. Life Sci 87(11–12):333–338. https://doi.org/10.1016/j.lfs.2010.07.004
44. Bieger J, Cermak R, Blank R, de Boer VC, Hollman PC, KamphuesJ, Wolffram S (2008) Tissue distribution of quercetin in pigsafter long-term dietary supplementation. J Nutr 138(8):1417–1420
45. Pogacnik L, Pirc K, Palmela I, Skrt M, Kim KS, Brites D, BritoMA, Ulrih NP, Silva RF (2016) Potential for brain accessibilityand analysis of stability of selected flavonoids in relationto neuroprotection in vitro. Brain Res 1651:17–26. https://doi.org/10.1016/j.brainres.2016.09.020
46. Faria A, Meireles M, Fernandes I, Santos-Buelga C, Gonzalez-Manzano S, Duenas M, de Freitas V, Mateus N, Calhau C(2013) Flavonoid metabolites transport across a human BBBmodel. Food Chem 149:190–196. https://doi.org/10.1016/j.foodchem.2013.10.095
47. Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, AbbottNJ (2004) Flavonoid permeability across an in situ model of theblood–brain barrier. Free Radic Biol Med 36(5):592–604. https://doi.org/10.1016/j.freeradbiomed.2003.11.023
48. Passamonti S, Vrhovsek U, Vanzo A, Mattivi F (2005) Fastaccess of some grape pigments to the brain. J Agric Food Chem53(18):7029–7034. https://doi.org/10.1021/jf050565k
49. Nebbia C (2001) Biotransformation enzymes as determinants ofxenobiotic toxicity in domestic animals. Vet J 161(3):238–252.https://doi.org/10.1053/tvjl.2000.0561
50. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelialinteractions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53. https://doi.org/10.1038/nrn1824
51. Cardoso FL, Brites D, Brito MA (2010) Looking at the blood–brain barrier: molecular anatomy and possible investigationapproaches. Brain Res Rev 64(2):328–363. https://doi.org/10.1016/j.brainresrev.2010.05.003
52. Kim SU, de Vellis J (2005) Microglia in health and disease. JNeurosci Res 81(3):302–313. https://doi.org/10.1002/jnr.20562
53. Vyas P, Kalidindi S, Chibrikova L, Igamberdiev AU, Weber JT(2013) Chemical analysis and effect of blueberry and lingonberryfruits and leaves against glutamate-mediated excitotoxicity. JAgric Food Chem 61(32):7769–7776. https://doi.org/10.1021/jf401158a
54. Sagaya FM, Hurrell RF, Vergeres G (2012) Postprandial blood celltranscriptomics in response to the ingestion of dairy products byhealthy individuals. J Nutr Biochem 23(12):1701–1715. https://doi.org/10.1016/j.jnutbio.2012.01.001
55. Siegel D, Gustafson DL, Dehn DL, Han JY, Boonchoong P, BerlinerLJ, Ross D (2004) NAD(P)H:quinone oxidoreductase 1:role as a superoxide scavenger. Mol Pharmacol 65(5):1238–1247.https://doi.org/10.1124/mol.65.5.1238
56. Ross D, Siegel D (2004) NAD(P)H:quinone oxidoreductase1 (NQO1, DT-diaphorase), functions and pharmacogenetics.Methods Enzymol 382:115–144. https://doi.org/10.1016/S0076-6879(04)82008-1
57. Surget S, Khoury MP, Bourdon JC (2014) Uncovering the role ofp53 splice variants in human malignancy: a clinical perspective.Onco Targets Ther 7:57–68. https://doi.org/10.2147/OTT.S53876
58. DeCoster MA, Schabelman E, Tombran-Tink J, Bazan NG(1999) Neuroprotection by pigment epithelial-derived factoragainst glutamate toxicity in developing primary hippocampalneurons. J Neurosci Res 56(6):604–610. 10.1002/(SICI)1097-4547(19990615)56:6<604::AID-JNR6>3.0.CO;2-B
59. Amano S, Yamagishi S, Inagaki Y, Nakamura K, Takeuchi M,Inoue H, Imaizumi T (2005) Pigment epithelium-derived factorinhibits oxidative stress-induced apoptosis and dysfunction of culturedretinal pericytes. Microvasc Res 69(1–2):45–55. https://doi.org/10.1016/j.mvr.2004.11.001
60. Tombran-Tink J, Barnstable CJ (2003) PEDF: a multifacetedneurotrophic factor. Nat Rev Neurosci 4(8):628–636. https://doi.org/10.1038/nrn1176
61. Pazoki-Toroudi H, Amani H, Ajami M, Nabavi SF, Braidy N,Kasi PD, Nabavi SM (2016) Targeting mTOR signaling by polyphenols:a new therapeutic target for ageing. Ageing Res Rev31:55–66. https://doi.org/10.1016/j.arr.2016.07.004
62. Adams LS, Phung S, Yee N, Seeram NP, Li L, Chen S (2010)Blueberry phytochemicals inhibit growth and metastatic potentialof MDA-MB-231 breast cancer cells through modulation of thephosphatidylinositol 3-kinase pathway. Cancer Res 70(9):3594–3605. https://doi.org/10.1158/0008-5472.CAN-09-3565
63. Ahmad A, Ali T, Park HY, Badshah H, Rehman SU, Kim MO(2016) Neuroprotective effect of fisetin against amyloid-betainducedcognitive/synaptic dysfunction, neuroinflammation, andneurodegeneration in adult mice. Mol Neurobiol. https://doi.org/10.1007/s12035-016-9795-4
64. Zhao W, Wang J, Bi W, Ferruzzi M, Yemul S, Freire D, MazzolaP, Ho L, Dubner L, Pasinetti GM (2015) Novel applicationof brain-targeting polyphenol compounds in sleep deprivationinducedcognitive dysfunction. Neurochem Int 89:191–197.https://doi.org/10.1016/j.neuint.2015.07.023
65. O’Neil BJ, McKeown TR, DeGracia DJ, Alousi SS, Rafols JA,White BC (1999) Cell death, calcium mobilization, and immunostainingfor phosphorylated eukaryotic initiation factor 2-alpha(eIF2alpha) in neuronally differentiated NB-104 cells: arachidonateand radical-mediated injury mechanisms. Resuscitation41(1):71–83
66. Hattori K, Naguro I, Runchel C, Ichijo H (2009) The roles of ASKfamily proteins in stress responses and diseases. Cell CommunSignal 7:9. https://doi.org/10.1186/1478-811X-7-9
67. Han W, Christen P (2004) cis-Effect of DnaJ on DnaK in ternarycomplexes with chimeric DnaK/DnaJ-binding peptides.FEBS Lett 563(1–3):146–150. https://doi.org/10.1016/S0014-5793(04)00290-X
68. Kampinga HH (1993) Thermotolerance in mammalian cells. Proteindenaturation and aggregation, and stress proteins. J Cell Sci104(Pt 1):11–17
69. Putics A, Vegh EM, Csermely P, Soti C (2008) Resveratrolinduces the heat-shock response and protects human cells fromsevere heat stress. Antioxid Redox Signal 10(1):65–75. https://doi.org/10.1089/ars.2007.1866
70. Thakur VS, Gupta K, Gupta S (2012) Green tea polyphenolsincrease p53 transcriptional activity and acetylation by suppressingclass I histone deacetylases. Int J Oncol 41(1):353–361.https://doi.org/10.3892/ijo.2012.1449
71. Lin ST, Tu SH, Yang PS, Hsu SP, Lee WH, Ho CT, Wu CH,Lai YH, Chen MY, Chen LC (2016) Apple polyphenol phloretininhibits colorectal cancer cell growth via inhibition of the type2 glucose transporter and activation of p53-mediated signaling.J Agric Food Chem 64(36):6826–6837. https://doi.org/10.1021/acs.jafc.6b02861
72. Sakagami H, Hashimoto K, Suzuki F, Ogiwara T, Satoh K, ItoH, Hatano T, Takashi Y, Fujisawa S-i (2005) Molecular requirementsof lignin–carbohydrate complexes for expression of uniquebiological activities. Phytochemistry 66(17):2108–2120. https://doi.org/10.1016/j.phytochem.2005.05.013
73. Ohkawa H, Sohma H, Sakai R, Kuroki Y, Hashimoto E, MurakamiS, Saito T (2002) Ethanol-induced augmentation of annexin IV incultured cells and the enhancement of cytotoxicity by overexpressionof annexin IV by ethanol. BBA Mol Basis Dis 1588(3):217–225. https://doi.org/10.1016/S0925-4439(02)00168-0
74. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, SadriN, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T,Leiden JM, Ron D (2003) An integrated stress response regulatesamino acid metabolism and resistance to oxidative stress. MolCell 11(3):619–633
75. Rzymski T, Milani M, Singleton DC, Harris AL (2009) Roleof ATF4 in regulation of autophagy and resistance to drugs andhypoxia. Cell Cycle 8(23):3838–3847. https://doi.org/10.4161/cc.8.23.10086
76. Teske BF, Fusakio ME, Zhou D, Shan J, McClintick JN, KilbergMS, Wek RC (2013) CHOP induces activating transcription factor5 (ATF5) to trigger apoptosis in response to perturbations inprotein homeostasis. Mol Biol Cell 24(15):2477–2490. https://doi.org/10.1091/mbc.E13-01-0067
77. Wang S-Z, Ou J, Zhu LJ, Green MR (2012) Transcriptionfactor ATF5 is required for terminal differentiation andsurvival of olfactory sensory neurons. Proc Natl Acad Sci USA109(45):18589–18594. https://doi.org/10.1073/pnas.1210479109
78. Dluzen D, Li G, Tacelosky D, Moreau M, Liu DX (2011) BCL-2is a downstream target of ATF5 that mediates the prosurvivalfunction of ATF5 in a cell type-dependent manner. J Biol Chem286(9):7705–7713. https://doi.org/10.1074/jbc.M110.207639
79. Sheng Z, Ma L, Sun JE, Zhu LJ, Green MR (2011) BCR-ABL suppressesautophagy through ATF5-mediated regulation of mTORtranscription. Blood 118(10):2840–2848. https://doi.org/10.1182/blood-2010-12-322537
80. Kanakis CD, Tarantilis PA, Polissiou MG, Tajmir-Riahi HA(2006) Interaction of antioxidant flavonoids with tRNA: intercalationor external binding and comparison with flavonoid-DNAadducts. DNA Cell Biol 25(2):116–123. https://doi.org/10.1089/dna.2006.25.116
81. N’Soukpoe-Kossi CN, Bourassa P, Mandeville JS, Bekale L,Bariyanga J, Tajmir-Riahi HA (2015) Locating the bindingsites of antioxidants resveratrol, genistein and curcumin withtRNA. Int J Biol Macromol 80:41–47. https://doi.org/10.1016/j.ijbiomac.2015.06.021
82. Cavet ME, Harrington KL, Vollmer TR, Ward KW, Zhang JZ(2011) Anti-inflammatory and anti-oxidative effects of the greentea polyphenol epigallocatechin gallate in human corneal epithelialcells. Mol Vis 17:533–542
83. Catalan U, Fernandez-Castillejo S, Angles N, Morello JR, YebrasM, Sola R (2012) Inhibition of the transcription factor c-Jun bythe MAPK family, and not the NF-kappaB pathway, suggests thatpeanut extract has anti-inflammatory properties. Mol Immunol52(3–4):125–132. https://doi.org/10.1016/j.molimm.2012.05.007
a Rutgers University, SEBS, New Brunswick, NJ 08901, USA
b North Carolina State University, Kannapolis, NC, USA
注:将上面摘要外文内容复制后,点击翻译助手,最后粘贴内容至翻译框内。
国外文献
zghmwhmyj@163.com
国内文献
编辑推荐
联系我们
精选页面