Abstract:Total polyphenolic and anthocyanin- and proanthocyanidin-rich fractions from wild blackberrygenotypes (WB-3, WB-7, WB-10, and WB-11), a domesticated noncommercial breeding line(UM-601), and a commercial cultivar (Tupy) were evaluated for inhibition of pro-inflammatoryresponses [nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression, cyclooxygenase-2 (COX-2) expression, and prostaglandin E2 (PGE2)] in RAW 264.7 macrophages stimulatedby lipopolysaccharide (LPS). At 50 μM [cyanidin-3-O-glucoside (C3G) or catechin equivalent],most fractions significantly (P < 0.05) inhibited all markers. The anthocyanin-rich fraction fromWB-10 and the proanthocyanidin-rich fraction from UM-601 exhibited the highest NO inhibitoryactivities (IC50 = 16.1 and 15.1 μM, respectively). Proanthocyanidin-rich fractions from the wildWB-10 showed the highest inhibition of iNOS expression (IC50 = 8.3 μM). Polyphenolic-rich fractionsfrom WB-7 and UM-601 were potent inhibitors of COX-2 expression (IC50 = 19.1 and 19.3 μM C3Gequivalent, respectively). For most of the extracts, antioxidant capacity was significantly correlatedwith NO inhibition. Wild genotypes of Mexican blackberries, as rich sources of polyphenolics thathave both antioxidant and anti-inflammatory properties, showed particular promise for inclusion inplant improvement programs designed to develop new varieties with nutraceutical potential.

Key words:Inflammation; wild blackberries; polyphenolic-rich fractions (PAE); antioxidant capacity; anthocyanins (ANC); proanthocyanidins (PAC); Rubus

†Programa de Posgrado en Alimentos del Centro de la Republica (PROPAC), Universidad Anto´ noma de
Quere´taro, Santiago de Quere´taro, Quere´taro, Mexico 36821, ‡Facultad de Ciencias Quı´mico-Biolo´ gicas,
Universidad Auto´noma de Sinaloa, Culiaca´ n, Sinaloa, Mexico, §Department of Food Science and
Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
#Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081,
^Universidad Michoacana de San Nicola´ s de Hidalgo, Uruapan, Michoaca´ n, Mexico 60190, XCentro de
Investigacio´ n y de Estudios Avanzados del Instituto Polite´cnico Nacional, Irapuato, Guanajuato,
Mexico 36821, and 4Department of Natural Resources and Environmental Sciences,
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

翻译助手

EDITH O. CUEVAS-RODRI´GUEZ,†,‡,4 VERMONT P. DIA,§ GAD G. YOUSEF,#PEDRO A. GARCI´A-SAUCEDO,^ JOSE´ LO´ PEZ-MEDINA,^ OCTAVIO PAREDES-LO´ PEZ,XELVIRA GONZALEZ DE MEJIA,§AND MARY ANN LILA*,#,4

注:将上面摘要外文内容复制后,点击翻译助手,最后粘贴内容至翻译框内。

链接全文

参考文献:

(1) Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-relatedinflammation. Nature 2008, 454, 436–444.
(2) Shin, K.; Kim, I.; Park, Y.; Ha, J.; Choi, J.; Park, H.; Lee, Y. S.; Lee,K. Anti-inflammatory effect of caffeic acid methyl ester and its modeof action through the inhibition of prostaglandin E2, nitric oxide andtumor necrosis factor-R production. Biochem. Pharmacol. 2004, 68,2327–2336.
(3) Dia, V. P.; Wang, W.; Oh, V. L.; de Lumen, B. O.; de Mejia, E. G.Isolation, purification and characterisation of lunasin from defattedsoybean flour and in vitro evaluation of its anti-inflammatoryactivity. Food Chem. 2009, 114, 108–115.

(4) Yoon, J.; Baek, S. J. Molecular targets of dietary polyphenols withanti-inflammatory properties. Yonsei Med. J. 2005, 46, 585–596.
(5) Pan, M. H.; Ghai, G.; Ho, C. T. Food bioactives, apoptosis, andcancer. Mol. Nutr. Food Res. 2008, 52, 43–52.
(6) Mertz, C.; Cheynier, V.; Ganata, Z.; Brat, P. Analysis of phenoliccompounds in two blackberry species (Rubus glaucus and Rubusadenotrichus) by high-performance liquid chromatography withdiode array detection and electrospray ion trap mass spectrometry.J. Agric. Food Chem. 2007, 55, 8616–8624.
(7) Stoner, G. D.; Wang, L.; Casto, B. C. Laboratory and clinical studies ofcancer chemoprevention by antioxidants in berries. Carcinogenesis 2008,29, 1665–1674.
(8) Mertz, C.; Gancel, A.; Gunata, Z.; Alter, P.; Dhuique-Mayer, C.;Vaillant, F.; Perez, A. M.; Ruales, J.; Brat, P. Phenolic compounds,carotenoids and antioxidant activity of three tropical fruits. J. FoodCompos. Anal. 2009, 22, 381–387.
(9) Wang, S. Y.; Jiao, H. Scavenging capacity of berry crops on superoxideradicals, hydrogen peroxide, hydroxyl radicals, and singletoxygen. J. Agric. Food Chem. 2000, 48, 5677–5684.
(10) Pantelidis, G. E.; Vasilakakis, M.; Manganaris, G. A.; Diamantidis,G. Antioxidant capacity, phenol, anthocyanin and ascorbic acidcontents in raspberries, blackberries, red currants, gooseberries andCornelian cherries. Food Chem. 2007, 102, 777–783.
(11) Rao, C. V. Nitric oxide signaling in colon cancer chemoprevention.Mutat. Res./Fundam. Mol. Mech. Mutagen. 2004, 555, 107–119.
(12) Lin, Y.; Lin, J. (-)-Epigallocatechin-3-gallate blocks the inductionof nitric oxide synthase by down-regulating lipopolysaccharideinducedactivity of transcription factor nuclear factor-κB. Mol.Pharmacol. 1997, 52, 465–472.
(13) Koca, I.; Karadeniz, B. Antioxidant properties of blackberry andblueberry fruits grown in the Black Sea region of Turkey. Sci. Hortic.2009, 121, 447–450.
(14) Reyes-Carmona, J.; Yousef, G. G.; Martı´nez-Peniche, R. A.; Lila,M. A. Antioxidant capacity of fruit extracts of blackberry (Rubus sp.)produced in different climatic regions. J. Food Sci. 2005, 70, S497–S503.
(15) Siriwoharn, T.; Wrolstad, R. E.; Finn, C. E.; Pereira, C. B. Influenceof cultivar, maturity, and sampling on blackberry (Rubus L. hybrids)anthocyanins, polyphenolics, and antioxidant properties. J. Agric.Food Chem. 2004, 52, 8021–8030.
(16) Kalt, W.; Ryan, D. A. J.; Duy, J. C.; Prior, R. L.; Ehlenfeldt, M. K.;Vander Kloet, S. P. Interspecific variation in anthocyanins, phenolics,and antioxidant capacity among genotypes of highbush andlowbush blueberries (Vaccinium section cyanococcus spp.). J. Agric.Food Chem. 2001, 49, 4761–4767.
(17) Rossi,A.; Serraino, I.;Dugo, P.; Paola,R.D.;Mondello, L.;Genovese,T.; Morabito, D.; Dugo, G.; Sautebin, L.; Caputi, A.; Cuzzocrea, S.Protective effects of anthocyanins from blackberry in a rat model ofacute lung inflammation. Free Radical Res. 2003, 37, 891–900.
(18) Deighton, N.; Brennan, R.; Finn, C; Davies, H. V. Antioxidantproperties of domesticated and wild Rubus species. J. Sci. FoodAgric. 2000, 2010, 1307–1313.
(19) Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plantgenotype affects total antioxidant capacity and phenolic contents infruit. Nutrition 2005, 21, 207–213.
(20) Pergola, C.; Rossi, A.; Dugo, P.; Cuzzocrea, S.; Sautebin, L.Inhibition of nitric oxide biosynthesis by anthocyanin fraction ofblackberry extract. Nitric Oxide 2006, 15, 30–39.
(21) Cuevas-Rodrı´guez, E. O.; Yousef, G. G.; Garcı´a-Saucedo, P. A.;Medina-Garcı´a, J.; Paredes-Lo´ pez, O.; Lila, M. A. Characterizationof anthocyanins and proanthocyanidins in wild and domesticatedMexican blackberries (Rubus spp.). J. Agric. Food Chem. 2010, 58,7458–7464.
(22) Nurmi, K. I.; Ossipov, V.; Haukioja, E.; Kalevi, P. Phenolic contentand individual low-molecular-weight phenolics in foliage of mountainbirch trees (Betula pubescens spp.tortuosa). J. Chem. Ecol. 1996,22, 2023–2040.
(23) Prior, R. L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Luke, H.;Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays forhydrophilic and lipophilic antioxidant capacity oxygen radicalabsorbance capacity (ORAC) of plasma and other biological andfood samples. J. Agric. Food Chem. 2003, 51, 3273–3279.
(24) Da´ valos, A.; Gomez-Co´ rdovez, C.; Bartolome´ , B. Extending applicabilityof the oxygen radical absorbance capacity (ORAC-fluorescein)assay. J. Agric. Food Chem. 2004, 52, 48–54.
(25) SAS Institute. SAS User’s Guide, Statistics, 8th ed.; SAS Institute:Cary NC, 1999.
(26) Gonzalez, E. M.; de Ancos, B.; Cano, M. P. Partial characterizationof peroxidase and polyphenol oxidase activities in blackberry fruits.J. Agric. Food Chem. 2000, 48, 5459–5464.
(27) Vasco, C.; Ruales, J.; Kamal-Eldin, A. Total phenolic compoundsand antioxidant capacities of major fruits from Ecuador. Food Chem.2008, 111, 816–823.
(28) Dai, J.; Patel, J. D.; Mumper, R. J. Characterization of blackberryextract and Its antiproliferative and anti-inflammatory properties.J. Med. Food 2007, 10, 258–265.
(29) Hager, T. J.; Howard, L. R.; Liyanage, R.; Lay, J. O.; Prior, R. L.Ellagitannin composition of blackberry as determined by HPLC-ESIMSand MALDI-TOF-MS. J. Agric. Food Chem. 2008, 56, 661–669.
(30) Puupponen-Pimi€a, R.; Nohynek, L.; Alakomi, H. L.; Oksman-Caldentey, K. M. Bioactive berry compounds;novel tools againsthuman pathogens. Appl. Microbiol. Biotechnol. 2005, 67, 8–18.
(31) Wu, X.; Gu, L.; Prior, R. L.; McKay, S. Characterization ofanthocyanins and proanthocyanidins in some cultivars of Ribes,Aronia, and Sambucus and their antioxidant capacity. J. Agric. FoodChem. 2004, 52, 7846–7856.
(32) Prior, R. L.; Gu, L. Occurrence and biological significance ofproanthocyanidins in the American diet. Phytochemistry 2005, 66,2264–2280.
(33) Chen, Y.; Shen, S.; Chen, L.; Lee, T., J-F.; Yang, L. Wogonin,baicalin, and baicalein inhibition of inducible nitric oxide synthaseand cyclooxygenase-2 gene expressions induced by nitric oxidesynthase inhibitors and lipopolysaccharide. Biochem. Pharmacol.2001, 61, 1417–1427.
(34) Agarwal, S.; Reddy, G. V.; Reddanna, P. Eicosanoids in inflammationand cancer: the role of COX-2. Expert Rev. Clin. Inmmunol.2009, 5, 145–165.
(35) Seril, D. N.; Liao, J.; Yang, G.; Yang, C. S. Oxidative stress andulcerative colitis-associated carcinogenesis: studies in humans andanimal models. Carcinogenesis 2003, 24, 353–362.
(36) Nguyen, T.; Brunson, D.; Crespi, C. L.; Penman, B. W.; Wishnok,J. S.; Tannenbaum, S. R. DNA damage and mutation in human cellsexposed to nitric oxide in vitro. Proc. Natl. Acad. Sci. U.S.A. 1992,89, 3030–3034.
(37) Wang, J.; Mazza, G. Inhibitory effects of anthocyanins and otherphenolic compounds on nitric oxide production in LPS/IFN-γ-activated RAW 264.7 macrophages. J. Agric. Food Chem. 2002,50, 850–857.

(38) Hori, M.; Kita, M.; Torihashi, S.; Miyamoto, S.; Won, K.; Sato, K.;Ozaki, H.; Karaki, H. Upregulation of iNOS by COX-2 in muscularisresident macrophage of rat intestine stimulated with LPS. Am.J. Physiol. Gastrointest. Liver Physiol. 2001, 280, G930–938.
(39) Garcia-Lafuente, A.; Guillaman, E.; Villares, A.; Rostagno, M.;Martinez, J. Flavonoids as anti-inflammatory agents: implications incancer and cardiovascular disease. Inflamm. Res. 2009, 58, 537–552.
(40) Kobuchi, H.; Virgill, F.; Packer, L. Assay of inducible form of nitricoxide synthase activity: effect of flavonoids and plant extracts. InMethods in Enzymology; Kobuchi, H., Virgill, F., Packer, L., Ed.;Academic Press: New York,1999; Vol. 301, pp 504-513.
(41) Lauritsen, K.; Laursen, L. S.; Bukhave, K.; Rask-Madsen, J.Inflammatory intermediaries in inflammatory bowel disease. Gastroenterology1989, 4, 75–90.
(42) Reuter, B. K.; Asfaha, S.; Buret, A.; Sharkey, K. A.; Wallace, J. L.Exacerbation of inflammation-associated colonic injury in rat throughinhibition of cyclooxygenase-2. J. Clin. Invest. 1996, 98, 2076–2085.

Inhibition of Pro-inflammatory Responses and Antioxidant Capacity of Mexican Blackberry (Rubus spp.) Extracts

国外文献

mail  zghmwhmyj@163.com

国内文献

编辑推荐

联系我们

精选页面

黑莓与高脂血症
黑莓与备孕
健康研究
营养成分
黑莓生长
黑莓历史