Abstract:Blackberry fruit contains high levels of polyphenols particularly anthocyanins which contribute to its biological activities. Bioavailability of polyphenols especially anthocyanins is generally low, it has been proposed that metabolites from polyphenol biotransformation under colonic fermentation are components that exert health benefits. In this study, blackberry was subjected to simulated gastrointestinal digestion and gut microbiota fermentation at different time intervals (0-48 h) to study the changes in bioactive components, its antioxidant and antidiabetic activities. Phenolic compounds, during digestion and fermentation were also analysed. Gut metabolites of blackberry significantly increased the glucose consumption and glycogen content in HepG2 cells. Furthermore, gut metabolites ameliorated high glucose plus palmitic acid-induced ROS overproduction, mitochondrial membrane collapse, and glutathione depletion in HepG2 cells. The mechanism of antidiabetic activity of blackberry was via its potent antioxidant activity. Therefore, our results suggest that blackberry could be recommended as a functional food due to potential antioxidant and antidiabetic activity.

翻译助手

Vemana Gowd1, Tao Bao1, Liling Wang3, Ying Huang3, Shenghuizi Chen3, Xiaodong Zheng1, Sunliang Cui2*, Wei Chen1*

参考文献:

[1]Alfadda, A. A., & Sallam, R. M. (2012). Reactive Oxygen Species in Health and Disease.Journal of Biomedicine and Biotechnology, 2012, 936486.Anhê, F. F., Desjardins, Y., Pilon, G., Dudonné, S., Genovese, M. I., Lajolo, F. M., & Marette,A. (2013). Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition,1(4), 105-114.
[2]Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress—A concise review. Saudi Pharmaceutical Journal, 24(5), 547-553. Aura, A. M., Martin-Lopez, P., O'Leary, K. A., Williamson, G., Oksman-Caldentey, K. M.,Poutanen, K., & Santos-Buelga, C. (2005). In vitro metabolism of anthocyanins by human gut microflora. European Journal of Nutrition, 44(3), 133-142.
[3]Bao, T., Xu, Y., Gowd, V., Zhao, J., Xie, J., Liang, W., & Chen, W. (2016). Systematic study on phytochemicals and antioxidant activity of some new and common mulberry cultivars in China. Journal of Functional Foods, 25, 537-547.
[4]Chen, W., Feng, L., Shen, Y., Su, H., Li, Y., Zhuang, J., Zhang, L., & Zheng, X. (2013).Myricitrin inhibits acrylamide-mediated cytotoxicity in human Caco-2 cells by preventing oxidative stress. BioMed Research International, 2013, 724183.
[5]Chen, W., Li, Y., Bao, T., & Gowd, V. (2017). Mulberry Fruit Extract Affords Protection against Ethyl Carbamate-Induced Cytotoxicity and Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2017, 1594963.

[6]Chen, W., Shen, Y., Su, H., & Zheng, X. (2014). Hispidin derived from Phellinus linteus affords protection against acrylamide-induced oxidative stress in Caco-2 cells. Chemico- Biological Interactions, 219, 83-89.
[7]Chen, W., Su, H., Xu, Y., Bao, T., & Zheng, X. (2016). Protective effect of wild raspberry (Rubus hirsutus Thunb.) extract against acrylamide-induced oxidative damage is potentiated after simulated gastrointestinal digestion. Food Chemistry, 196, 943-952.
[8]Chen, W., Su, H., Xu, Y., & Jin, C. (2017). In vitro gastrointestinal digestion promotes the protective effect of blackberry extract against acrylamide-induced oxidative stress. Scientific Reports, 7, 40514.
[9]Chen, W., Xu, Y., Zhang, L., Su, H., & Zheng, X. (2016). Blackberry subjected to in vitro gastrointestinal digestion affords protection against Ethyl Carbamate-induced cytotoxicity. Food Chemistry, 212, 620-627.
[10]Chen, W., Xu, Y., Zhang, L., Li, Y., & Zheng, X. (2016). Wild Raspberry Subjected to Simulated Gastrointestinal Digestion Improves the Protective Capacity against Ethyl Carbamate-Induced Oxidative Damage in Caco-2 Cells. Oxidative Medicine and Cellular Longevity, 2016, 3297363.
[11]Chen, W., Zhang, L., Zhang, K., Zhou, B., Kuo, M.-L., Hu, S., Chen, L., Tang, M., Chen, Y.-R., Yang, L., Ann, D. K., & Yen, Y. (2014). Reciprocal regulation of autophagy and dNTP pools in human cancer cells. Autophagy, 10(7), 1272-1284.
[12]Chen, W., Zhao, Z., Li, L., Wu, B., Chen, S. F., Zhou, H., Wang, Y., & Li, Y. Q. (2008).Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediatedmitochondrial pathway. Free Radical Biology and Medicine, 45(1), 60-72. [13]Chen, W., Zhuang, J., Li, Y., Shen, Y., & Zheng, X. (2013). Myricitrin protects against peroxynitrite-mediated DNA damage and cytotoxicity in astrocytes. Food Chemistry, 141(2), 927-933.
[14]Couto, N., Wood, J., & Barber, J. (2016). The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radical Biology and Medicine, 95, 27-42.
[15]Dai, J., Gupte, A., Gates, L., & Mumper, R. J. (2009). A comprehensive study of anthocyanincontaining extracts from selected blackberry cultivars: extraction methods, stability, anticancer properties and mechanisms. Food and Chemical Toxicology, 47(4), 837-847.
[16]de Ferrars, R. M., Czank, C., Zhang, Q., Botting, N. P., Kroon, P. A., Cassidy, A., & Kay, C. D.(2014). The pharmacokinetics of anthocyanins and their metabolites in humans. British Journal of Pharmacology, 171(13), 3268-3282.
[17]Fernandes, I., Faria, A., Calhau, C., de Freitas, V., & Mateus, N. (2014). Bioavailability of anthocyanins and derivatives. Journal of Functional Foods, 7, 54-66.
[18]Gowd, V., Jia, Z., & Chen, W. (2017). Anthocyanins as promising molecules and dietary bioactive components against diabetes – A review of recent advances. Trends in Food Science & Technology, 68, 1-13.
[19]Gowd, V., & Nandini, C. D. (2015). Erythrocytes in the combined milieu of high glucose and high cholesterol shows glycosaminoglycan-dependent cytoadherence to extracellular matrix components. International Journal of Biological Macromolecules, 73, 182-188.
[20]Guergoletto, K. B., Costabile, A., Flores, G., Garcia, S., & Gibson, G. R. (2016). In vitro fermentation of jucara pulp (Euterpe edulis) by human colonic microbiota. Food Chemistry, 196, 251-258.                                                                       

[21]Hervert-Hernández, D., & Goñi, I. (2011). Dietary Polyphenols and Human Gut Microbiota: aReview. Food Reviews International, 27(2), 154-169.
[22]Hu, D., Xu, Y., Xie, J., Sun, C., Zheng, X., & Chen, W. (2018). Systematic evaluation of phenolic compounds and protective capacity of a new mulberry cultivar J33 against palmitic acid-induced lipotoxicity using a simulated digestion method. Food Chemistry,258, 43-50.
[23]Kaume, L., Howard, L. R., & Devareddy, L. (2012). The Blackberry Fruit: A Review on Its Composition and Chemistry, Metabolism and Bioavailability, and Health Benefits. Journal of Agricultural and Food Chemistry, 60(23), 5716-5727.
[24]Koya, D., Hayashi, K., Kitada, M., Kashiwagi, A., Kikkawa, R., & Haneda, M. (2003). Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. Journal of the American Society of Nephrology, 14, 250-253.
[25]Li, Y., Bao, T., & Chen, W. (2018). Comparison of the protective effect of black and white mulberry against ethyl carbamate-induced cytotoxicity and oxidative damage. Food Chemistry, 243, 65-73.
[26]Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787-795.
[27]Matteucci, E., Ghimenti, M., Consani, C., Masoni, M. C., & Giampietro, O. (2011). Exploring leukocyte mitochondrial membrane potential in type 1 diabetes families. Cell Biochemistry and Biophysics, 59(2), 121-126.
[28]Roelandt, P., Sancho-Bru, P., Pauwelyn, K., & Verfaillie, C. (2010). Differentiation of rat multipotent adult progenitor cells to functional hepatocyte-like cells by mimicking embryonic liver development. Nature Protocols, 5, 1324.25
[29]Sautebin, L., Rossi, A., Serraino, I., Dugo, P., Di Paola, R., Mondello, L., Genovese, T., Britti,D., Peli, A., Dugo, G., Caputi, A. P., & Cuzzocrea, S. (2004). Effect of Anthocyanins Contained in a Blackberry Extract on the Circulatory Failure and Multiple OrganDysfunction Caused by Endotoxin in the Rat. Planta Medica, 70(08), 745-752.
[30]Serraino, I., Dugo, L., Dugo, P., Mondello, L., Mazzon, E., Dugo, G., Caputi, A. P., &Cuzzocrea, S. (2003). Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure. Life Sciences, 73(9), 1097-1114.
[31]Tavares, L., Figueira, I., Macedo, D., McDougall, G. J., Leitão, M. C., Vieira, H. L. A., Stewart,D., Alves, P. M., Ferreira, R. B., & Santos, C. N. (2012). Neuroprotective effect of blackberry (Rubus sp.) polyphenols is potentiated after simulated gastrointestinal digestion. Food Chemistry, 131(4), 1443-1452.
[32]van Dorsten, F. A., Peters, S., Gross, G., Gomez-Roldan, V., Klinkenberg, M., de Vos, R. C.,Vaughan, E. E., van Duynhoven, J. P., Possemiers, S., van de Wiele, T., & Jacobs, D. M.(2012). Gut microbial metabolism of polyphenols from black tea and red wine/grape juice is source-specific and colon-region dependent. Journal of Agricultural and Food Chemistry, 60(45), 11331-11342.
[33]Wang, P., Gao, Y.-M., Sun, X., Guo, N., Li, J., Wang, W., Yao, L.-P., & Fu, Y.-J. (2017). Hepatoprotective effect of 2′-O-galloylhyperin against oxidative stress-induced liver damage through induction of Nrf2/ARE-mediated antioxidant pathway. Food andChemical Toxicology, 102, 129-142.26
[34]Xu, Y., Hu, D., Bao, T., Xie, J., & Chen, W. (2017). A simple and rapid method for the preparation of pure delphinidin-3-O-sambubioside from Roselle and its antioxidant and hypoglycemic activity. Journal of Functional Foods, 39, 9-17.
[35]Xu, Y., Li, Y., Bao, T., Zheng, X., Chen, W., & Wang, J. (2017). A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates. Food Chemistry, 221, 114-122.
[36]Yan, F., Zhang, J., Zhang, L., & Zheng, X. (2016). Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of gluconeogenesis in human HepG2 cells. Food & Function, 7(1), 425-433.
[37]Zhang, L., Xu, Y., Li, Y., Bao, T., Gowd, V., & Chen, W. (2017). Protective property of mulberry digest against oxidative stress - A potential approach to ameliorate dietary acrylamide-induced cytotoxicity. Food Chemistry, 230, 306-315.

Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and
human gut microbiota fermentation

链接全文

注:将上面摘要外文内容复制后,点击翻译助手,最后粘贴内容至翻译框内。

1Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
2Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
3College of life sciences, Tarim University, Xinjiang 843300, China.

Key words: Blackberry; Antioxidant; Anthocyanins; Simulated gastrointestinal digestion; Gutmicrobiota fermentation; Diabetes

国外文献

mail  zghmwhmyj@163.com

国内文献

编辑推荐

联系我们

精选页面

黑莓与高脂血症
黑莓与备孕
健康研究
营养成分
黑莓生长
黑莓历史