ABSTRACT:Blackberry fiber (BF), extracted blackberry fiber (EBF), defatted blackberry seeds (DBS), and blackberry polyphenols (BP) were added to the diets of rats. A control diet, fiber diets (BF, EBF, DBS) with 6% addition instead of cellulose, and a polyphenol diet (BP) with 1% addition were administered for 4 weeks. BF and DBS contained polyphenols (3.6%); EBF did not. DBS was free of fat. Ellagitannins were the main phenolics, mostly dimers (sanguiin H-6 with isomers) and monomers (pedunculagin, casuarictin isomer, and sanguiin H-2 isomer). Trimers (lambertianin C with isomers) and tetramers (lambertianin D) were in the minority. EBF increased the production of propionate and butyrate in the cecum and improved the blood lipid profile. Polyphenols beneficially decreased the activity of cecal β-glucuronidase, but they may have also increased cholesterol levels in blood. Bacterial metabolism of ellagitannins in the colon gave rise to nasutin A and urolithin A.

KEY WORDS: blackberry, dietary fiber, ellagitannins, rat, nasutin A

链接全文

参考文献:

(1) Cuevas-Rodríguez, E.; Dia, V.; Yousef, G.; García-Saucedo, P.;López-Medina, J.; Paredes-López, O.; González de Mejía, E.; Lila, M.Inhibition of pro-inflammatory responses and antioxidant capacity ofmexican blackberry (Rubus spp.) extracts. J. Agric. Food Chem. 2010,58, 9542−9548.
(2) Kaume, L.; Howard, L. R.; Devareddy, L. The blackberry fruit: areview on its composition and chemistry, metabolism and bioavailabilityand health benefits. J. Agric. Food Chem. 2012, 60, 5716−5727.
(3) Azofeifa, G. Study of the health promoting properties of thetropical highland blackberry (Rubus adenotrichos) and the impact ofdigestion and pasteurization processes. PhD thesis, UniversitéMontpellier II - Sciences et Techniques du Languedoc, 2014;https://tel.archives-ouvertes.fr/tel-01002531, 21.04.17.
(4) Azofeifa, G.; Quesada, S.; Boudard, F.; Morena, M.; Cristol, J.-P.;Pérez, A. M.; Vaillant, F.; Michel, A. Antioxidant and antiinflammatoryin vitro activities of phenolic compounds from tropicalhighland blackberry (Rubus adenotrichos). J. Agric. Food Chem. 2013,61, 5798−5804.
(5) Azofeifa, G.; Quesada, S.; Navarro, L.; Hidalgo, O.; Portet, K.;Pérez, A. M.; Vaillant, F.; Poucheret, P.; Michel, A. Hypoglycaemic,hypolipidaemic and antioxidant effects of blackberry beverageconsumption in streptozotocin
induced diabetic rats. J. Funct. Foods2016, 26, 330−337.
(6) Strik, B. C.; Clark, J. R.; Finn, C. E.; Bañados, M. O. Worldwideblackberry production. Hort. Technol. 2007, 17, 205−213.
(7) Clark, J. R.; Finn, C. F. Blackberry cultivation in the world. Rev.Bras. Frutic. 2014, 36, 46−57.
(8) Patras, A.; Brunton, N. P.; O’Donnell, C.; Tiwari, B. K. Effect ofthermal processing on anthocyanin stability in foods; mechanisms andkinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3−11.
(9) Fotschki, B.; Jusḱ iewicz, J.; Soj́ ka, M.; Jurgoński, A.; Zduńczyk, Z.Ellagitannins and flavan-3-ols from raspberry pomace modulate caecalfermentation processes and plasma lipid parameters in rats. Molecules2015, 20, 22848−22862.
(10) Sójka, M.; Macierzyński, J.; Zaweracz, W.; Buczek, M. Transferand mass balance of ellagitannins, anthocyanins, flavan-3-ols, andflavonols during the processing of red raspberries (Rubus idaeus L.) tojuice. J. Agric. Food Chem. 2016, 64, 5549−5563.
(11) Giampieri, F.; Alvarez-Suarez, J. M.; Cordero, M. D.; Gasparrini,M.; Forbes-Hernandez, T. Y.; Afrin, S.; Santos-Buelga, C.; González-Paramás, A. M.; Astolfi, P.; Rubini, C.; Zizzi, A.; Tulipani, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Strawberry consumption improves agingassociatedimpairments, mitochondrial biogenesis and functionalitythrough the AMP-activated protein kinase signaling cascade. FoodChem. 2017, 234, 464−471.

(12) Cerdá, B.; Tomás-Barberán, F. A.; Espín, J. C. Metabolism ofantioxidant and chemopreventive ellagitannins from strawberries.raspberries. walnuts and oak-aged wine in humans: identification ofbiomarkers and individual variability. J. Agric. Food Chem. 2005, 53,227−235.
(13) Lee, J.; Dossett, M.; Finn, C. E. Rubus fruit phenolic research:the good, the bad, and the confusing. Food Chem. 2012, 130, 785−796.
(14) Vrhovsek, U.; Guella, G.; Gasperotti, M.; Pojer, E.; Zancato, M.;Mattivi, F. Clarifying the identity of the main ellagitannins in the fruitof the strawberry Fragaria vesca and Fragaria ananassa Duch. J. Agric.Food Chem. 2012, 60, 2507−2516.
(15) Espin, J. C.; Gonzalez-Barrio, R.; Cerda, B.; Lopez-Bote, C.;Rey, A. I.; Tomas-Barberan, F. A. Iberian pig as a model to clarifyobscure points in the bioavailability and metabolism of ellagitannins inhumans. J. Agric. Food Chem. 2007, 55, 10476−10485.
(16) Larrosa, M.; González-Sarrías, A.; Yáñez-Gascón, M. J.; Selma,M. V.; Azorín-Ortuño, M.; Toti, S.; Tomás-Barberán, F. A.; Dolara, P.;Espín, J. C. Anti-inflammatory properties of a pomegranate extract andits metabolite urolithin-A in a colitis rat model and the effect of coloninflammation on the phenolic metabolism. J. Nutr. Biochem. 2010, 21,717−725.
(17) González-Barrio, R.; Truchado, P.; Espín, J. C.; Tomás-Barberán, F. A.; Ito, H. UV and MS indentification of urolithins andnasutins, the biovailable metabolites of ellagitannins and ellagic acid indifferent mammals. J. Agric. Food Chem. 2011, 59, 1152−1162.
(18) Jurgoński, A.; Jusḱ iewicz, J.; Fotschki, B.; Kołodziejczyk, K.;Milala, J.; Kosmala, M.; Grzelak-Błaszczyk, K.; Markiewicz, L.Metabolism of strawberry mono- and dimeric ellagitannins in ratsfed a diet containing fructo-oligosaccharides. Eur. J. Nutr. 2017, 56,853.
(19) Piwowarski, J. P.; Granica, S.; Stefańska, J.; Kiss, A. K.Differences in metabolism of ellagitannins by human gut microbiota exvivo cultures. J. Nat. Prod. 2016, 79, 3022−3030.
(20) Larrosa, M.; García-Conesa, M. T.; Espín, J. C.; Tomás-Barberán, F. A. Ellagitannins. ellagic acid and vascular health. Mol.Aspects Med. 2010, 31, 513−539.
(21) Jaroslawska, J.; Juskiewicz, J.; Wroblewska, M.; Jurgoński, A.;Krol, B.; Zdunczyk, Z. Polyphenol-rich strawberry pomace reducesserum and liver lipids and alters gastrointestinal metabolite formationin fructose-fed rats. J. Nutr. 2011, 141, 1777−1783.
(22) O’Shea, N.; Arendt, E. K.; Gallagher, E. Dietary fiber andphytochemical characteristics of fruit and vegetable by-products andtheir recent applications as novel ingredients in food products.Innovative Food Sci. Emerging Technol. 2012, 16, 1−10.
(23) Saura-Calixto, F. Dietary fiber as a carrier of dietary antioxidants:an essential physiological function. J. Agric. Food Chem. 2011, 59, 43−49.
(24) Kosmala, M.; Kołodziejczyk, K.; Zduńczyk, Z.; Jusḱ iewicz, J.;Boros, D. Chemical composition of natural and polyphenol-free applepomace and the effect of this dietary ingredient on intestinalfermentation and serum lipid parameters in rats. J. Agric. Food Chem.2011, 59, 9177−9185.
(25) Kosmala, M.; Zduńczyk, Z.; Kołodziejczyk, K.; Klimczak, E.;Juskiewicz, J.; Zduńczyk, P. Chemical composition of polyphenolsextracted from strawberry pomace and their effect on physiologicalproperties of diets 
supplemented with different types of dietary fiber inrats. Eur. J. Nutr. 2014, 53, 521−532.
(26) Bushman, B. S.; Phillips, B.; Isbell, T.; Ou, B.; Crane, J. M.;Knapp, S. J. Chemical composition of caneberry (Rubus spp.) seedsand oils and their antioxidant potential. J. Agric. Food Chem. 2004, 52,7982−7987.
(27) Kosmala, M.; Zduńczyk, Z.; Jusḱ iewicz, J.; Jurgoński, A.;Karlińska, E.; Macierzyński, J.; Jańczak, R.; Rój, E. Chemicalcomposition of defatted strawberry and raspberry seeds and the effectof these dietary ingredients on polyphenol metabolites, intestinalfunction, and selected serum parameters in rats. J. Agric. Food Chem.2015, 63, 2989−2996.
(28) Horwitz, W.; Latimer, G. W. Official Methods of Analysis ofAOAC International, 18th ed.; AOAC International: Rockville, MD,2007.
(29) Klimczak, E.; Rozpara, E.; Król, B. Distribution of ellagitanninsin juice, flesh, and achenes as additional criterion for optimal utilizationof strawberries. Zywn., Technol., Jakosc 2011, 6, 142−154.
(30) Sójka, M.; Klimczak, E.; Macierzyński, J.; Kołodziejczyk, K.Nutrient and polyphenolic composition of industrial strawberry presscake. Eur. Food Res. Technol. 2013, 237, 995−1007.
(31) Reeves, P. G. Components of the AIN-93 diets as improvementsin the AIN-76A Diet. J. Nutr. 1997, 127, 838S−841S.
(32) Jusḱ iewicz, J.; Zduńczyk, Z.; Żary-Sikorska, E.; Kroĺ , B.; Milala,J.; Jurgoński, A. Effect of the dietary polyphenolic fraction of chicoryroot, peel, seed and leaf extracts on caecal fermentation and bloodparameters in rats fed diets containing prebiotic fructans. Brit. Br. J.Nutr. 2011, 105, 710−720.
(33) García-Villalba, R.; Espín, J. C.; Tomás-Barberán, F. A.Chromatographic and spectroscopic characterization of urolithins fortheir determination in biological samples after the intake of foodscontaining ellagitannins and ellagic acid. J. Chromatogr. A 2016, 1428,162−175.
(34) Fotschki, B.; Milala, J.; Jurgoński, A.; Karlińska, E.; Zduńczyk,Z.; Jusḱ iewicz, J. Strawberry ellagitannins thwarted the positive effectsof dietary fructooligosaccharides in rat cecum. J. Agric. Food Chem.2014, 62, 5871−5880.
(35) Dimić, E. B.; Vujasinović, V. B.; Radočaj, O. F.; Pastor, O. P.Characteristics of blackberry and raspberry seeds and oils. Acta Period.Technol. 2012, 43, 1−9.
(36) Oszmianski, J.; Wojdyło, A.; Kolniak, J. Effect of L-ascorbic acid,sugar, pectin and freeze−thaw treatment on polyphenol content offrozen strawberries. LWT Food Sci. Techno. 2009, 42, 581−586.
(37) Le Bourvellec, C.; Guyot, S.; Renard, C. M. G. C. Interactionsbetween apple (Malus x domestica Borkh.) polyphenols and cell wallsmodulate the extractability of polysaccharides. Carbohydr. Polym. 2009,75, 251−261.
(38) Brownlee, I. A. The physiological roles of dietary fibre. FoodHydrocolloids 2011, 25, 238−250.
(39) Li, C.; Uppal, M. Canadian Diabetes Association NationalNutrition Committee clinical update on dietary fibre in diabetes: foodsources to physiological effects. Can. J. Diabetes 2010, 34, 355−361.
(40) Buzzini, P.; Arapitsas, P.; Goretti, M.; Branda, E.; Turchetti, B.;Pinelli, P.; Ieri, F.; Romani, A. Antimicrobial and antiviral activity ofhydrolysable tannins. Mini-Rev. Med. Chem. 2008, 8, 1179−1187.
(41) Nyman, M. Fermentation and bulking capacity of ingestiblecarbohydrates: the case of inulin and oligofructose. Br. J. Nutr. 2002,87 (Suppl. 2), S163−S168.
(42) Topping, D. L.; Clifton, P. M. Short-chain fatty acids and humancolonic function: Roles of resistant starch and nonstarch polysaccharides.Physiol. Rev. 2001, 81, 1031−1064.
(43) Hambly, R. J.; Rumney, C. J.; Cunningham, M.; Fletcher, J. M.E.; Rijken, P.; Rowland, I. R. Influence of diets containing high andlow risk factors for colon cancer on early stages of carcinogenesis inhuman-flora-associated (HFA) rats. Carcinogenesis 1997, 18, 1535−1539.
(44) González-Barrio, R.; Borges, G.; Mullen, W.; Crozier, A.Bioavailability of anthocyanins and ellagitannins following consumptionof raspberries by healthy humans and subjects with an ileostomy.J. Agric. Food Chem. 2010, 58, 3933−3939.
(45) Tomás-Barberán, F. A.; González-Sarrías, A.; García-Villalba, R.;Núñez-Sánchez, M. A.; Selma, M. V.; García-Conesa, M. T.; Espín, J.C. Urolithins, the rescue of “old” metabolites to understand a “new”concept: Metabotypes as a nexus among phenolic metabolism,microbiota dysbiosis, and host health status. Mol. Nutr. Food Res.2017, 61, 1500901.
(46) Dobiasova, M.; Frohlich, J. The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particlesize and esterification rate in apoB-lipoprotein-depleted plasma(FER(HDL). Clin. Biochem. 2001, 34, 583−588.
(47) Radocaj, O.; Vujasinovic, V.; Dimic, E.; Basic, Z. Blackberry(Rubus f ruticosus L.) and raspberry (Rubus idaeus L.) seed oilsextracted from dried press pomace after longterm frozen storage ofberries can be used as functional food ingredients. Eur. J. Lipid Sci.Technol. 2014, 116, 1015−1024.
(48) Fotschki, B.; Jusḱ iewicz, J.; Jurgoński, A.; Kołodziejczyk, K.;Milala, J.; Kosmala, M.; Zduńczyk, Z. Anthocyanins in strawberrypolyphenolic extract enhance the beneficial effects of diets withfructooligosaccharides in the rat cecal environment. PLoS One 2016,11, e0149081.
(49) Finné-Nielsen, I. L.; Elbol-Rasmussen, S.; Mortensen, A.; Ravn-Haren, G.; Ma, H. P.; Knuthsen, P.; Hansen, B. F.; McPhail, D.;Freese, R.; Breinholt, V.; Frandsen, H.; Dragsted, L. O. Anthocyaninsincrease low-density lipoprotein and plasma cholesterol and do notreduce atherosclerosis in Watanabe Heritable Hyperlipidemic rabbits.Mol. Nutr. Food Res. 2005, 49, 301−308.
(50) Nakagawa, K.; Maruyama, Y.; Miyazawa, T. Anthocyaninadministration elevates plasma homocysteine in rats. J. Nutr. Sci.Vitaminol. 2002, 48, 530−535.

Chemical Composition of Blackberry Press Cake, Polyphenolic Extract, and Defatted Seeds, and Their Effects on Cecal Fermentation,Bacterial Metabolites, and Blood Lipid Profile in Rats

Monika Kosmala,*,† Adam Jurgonś ki,*,‡ Jerzy Jusḱ iewicz,‡ Elzḃ ieta Karlinś ka,† Jakub Macierzynś ki,†Edward Rój,§ and Zenon Zduńczyk‡

 †Institute of Food Technology and Analysis, Lodz University of Technology, ul. Stefanowskiego 4/10, 90-924 Lodz, Poland
‡Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748
Olsztyn, Poland§New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland

翻译助手

注:将上面摘要外文内容复制后,点击翻译助手,最后粘贴内容至翻译框内。

黑莓历史
黑莓生长
营养成分
健康研究
黑莓与备孕
黑莓与高脂血症

精选页面

联系我们

编辑推荐

国内文献

mail  zghmwhmyj@163.com

国外文献