KEY WORDS:berry anthocyanins; glycation; neuroprotection; beta amyloid; oxidative stress;Alzheimer’s disease



1. Vicente Miranda, H.; El-Agnaf, O.; Outeiro, T.F. Glycation in Parkinson’s disease and Alzheimer’s disease.Mov. Disord. 2016, 31, 782–790. [CrossRef] [PubMed]
2. Lüth, H.-J.; Ogunlade, V.; Kuhla, B.; Kientsch-Engel, R.; Stahl, P.; Webster, J.; Arendt, T.; Münch, G. Age-andstage-dependent accumulation of advanced glycation end products in intracellular deposits in normal andAlzheimer’s disease brains. Cereb. Cortex 2005, 15, 211–220. [CrossRef] [PubMed]
3. Beeri, M.S.; Moshier, E.; Schmeidler, J.; Godbold, J.; Uribarri, J.; Reddy, S.; Sano, M.; Grossman, H.T.; Cai, W.;Vlassara, H. Serum concentration of an inflammatory glycotoxin, methylglyoxal, is associated with increasedcognitive decline in elderly individuals. Mech. Ageing Dev. 2011, 132, 583–587. [CrossRef] [PubMed]
4. Angeloni, C.; Zambonin, L.; Hrelia, S. Role of methylglyoxal in Alzheimer’s disease. BioMed Res. Int. 2014.[CrossRef] [PubMed]
5. Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.;Emmerling, M.; Fiebich, B.L. Inflammation and Alzheimer’s disease. Neurobiol. Aging 2000, 21, 383–421.[CrossRef]
6. Liu, W.; Ma, H.; Frost, L.; Yuan, T.; Dain, J.A.; Seeram, N.P. Pomegranate phenolics inhibit formation ofadvanced glycation endproducts by scavenging reactive carbonyl species. Food & Funct. 2014, 5, 2996–3004.
7. Ma, H.; Liu, W.; Frost, L.; Wang, L.; Kong, L.; Dain, J.A.; Seeram, N.P. The hydrolyzable gallotannin,penta-O-galloyl- -D-glucopyranoside, inhibits the formation of advanced glycation endproducts byprotecting protein structure. Mol. BioSyst. 2015, 11, 1338–1347. [CrossRef] [PubMed]8. Zhang, Y.; Ma, H.; Liu, W.; Yuan, T.; Seeram, N. New Antiglycative Compounds from Cumin(Cuminum cyminum) Spice. J. Agric. Food Chem. 2015, 63, 10097–10102. [CrossRef] [PubMed]
9. Ma, H.; Liu, W.; Frost, L.; Kirschenbaum, L.J.; Dain, J.A.; Seeram, N.P. Glucitol-core containing gallotanninsinhibit the formation of advanced glycation end-products mediated by their antioxidant potential. Food Funct.2016, 7, 2213–2222. [CrossRef] [PubMed]
10. Sun, J.; Liu, W.; Ma, H.; Marais, J.P.; Khoo, C.; Dain, J.A.; Rowley, D.C.; Seeram, N.P. Effect of cranberry(Vaccinium macrocarpon) oligosaccharides on the formation of advanced glycation end-products. J. Berry Res.2016, 6, 149–158. [CrossRef] [PubMed]
11. Liu, W.; Wei, Z.; Ma, H.; Cai, A.; Liu, Y.; Sun, J.; DaSilva, N.; Johnson, S.; Kirschenbaum, L.; Cho, B.Anti-glycation and anti-oxidative effects of a phenolic-enriched maple syrup extract and its protective effectson normal human colon cells. Food Funct. 2017, 8, 757–766. [CrossRef] [PubMed]
12. Liu, W.; Ma, H.; DaSilva, N.A.; Rose, K.N.; Johnson, S.L.; Zhang, L.; Wan, C.; Dain, J.A.; Seeram, N.P.Development of a neuroprotective potential algorithm for medicinal plants. Neurochem. Int. 2016, 100,164–177. [CrossRef] [PubMed]
13. Li, D.; Wang, P.; Luo, Y.; Zhao, M.; Chen, F. Health benefits of anthocyanins and molecular mechanisms:Update from recent decade. Crit. Rev. Food Sci. Nutr. 2015, 57, 1729–1741. [CrossRef] [PubMed]
14. Thangthaeng, N.; Poulose, S.M.; Miller, M.G.; Shukitt-Hale, B. Preserving Brain Function in Aging: TheAnti-glycative Potential of Berry Fruit. Neuromol. Med. 2016, 18, 465–473. [CrossRef] [PubMed]
15. Pribis, P.; Shukitt-Hale, B. Cognition: The new frontier for nuts and berries. Am. J. Clin. Nutr. 2014, 100,347S–352S. [CrossRef] [PubMed]
16. Lau, F.C.; Shukitt-Hale, B.; Joseph, J.A. The beneficial effects of fruit polyphenols on brain aging.Neurobiol. Aging 2005, 26, 128–132. [CrossRef] [PubMed]
17. Harris, C.S.; Cuerrier, A.; Lamont, E.; Haddad, P.S.; Arnason, J.T.; Bennett, S.A.; Johns, T. Investigatingwild berries as a dietary approach to reducing the formation of advanced glycation endproducts: Chemicalcorrelates of in vitro antiglycation activity. Plant Foods Hum. Nutr. 2014, 69, 71–77. [CrossRef] [PubMed]
18. Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidantactivity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [CrossRef] [PubMed]
19. Siriwoharn, T.; Wrolstad, R.E.; Finn, C.E.; Pereira, C.B. Influence of cultivar, maturity, and sampling onblackberry (Rubus L. Hybrids) anthocyanins, polyphenolics, and antioxidant properties. J. Agric. Food Chem.2004, 52, 8021–8030. [CrossRef] [PubMed]
20. Bowen-Forbes, C.S.; Zhang, Y.; Nair, M.G. Anthocyanin content, antioxidant, anti-inflammatory andanticancer properties of blackberry and raspberry fruits. J. Food Comp. Anal. 2010, 23, 554–560. [CrossRef]
21. Kalt, W.; McDonald, J.; Donner, H. Anthocyanins, phenolics, and antioxidant capacity of processed lowbushblueberry products. J. Food Sci. 2000, 65, 390–393. [CrossRef]
22. Prior, R.L.; Lazarus, S.A.; Cao, G.; Muccitelli, H.; Hammerstone, J.F. Identification of procyanidinsand anthocyanins in blueberries and cranberries (Vaccinium spp.) using high-performance liquidchromatography/massspectrometry. J. Agric. Food Chem. 2001, 49, 1270–1276. [CrossRef] [PubMed]
23. Da Silva, F.L.; Escribano-Bailón, M.T.; Alonso, J.J.P.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Anthocyaninpigments in strawberry. LWT-Food Sci. Technol. 2007, 40, 374–382. [CrossRef]
24. Liu, R.H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013, 78, A18-25. [CrossRef][PubMed]
25. Seeram, N.P.; Schutzki, R.; Chandra, A.; Nair, M.G. Characterization, quantification, and bioactivities ofanthocyanins in Cornus species. J. Agric. Food Chem. 2002, 50, 2519–2523. [CrossRef] [PubMed]
26. Seeram, N.P.; Adams, L.S.; Zhang, Y.; Lee, R.; Sand, D.; Scheuller, H.S.; Heber, D. Blackberry, black raspberry,
blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human
cancer cells in vitro. J. Agric. Food Chem. 2006, 54, 9329–9339. [CrossRef] [PubMed]
27. Zhang, Y.; Yuan, T.; Li, L.; Nahar, P.; Slitt, A.; Seeram, N.P. Chemical compositional, biological, and safetystudies of a novel maple syrup derived extract for nutraceutical applications. J. Agric. Food Chem. 2014, 62,6687–6698. [CrossRef] [PubMed]
28. Del Rio, D.; Borges, G.; Crozier, A. Berry flavonoids and phenolics: Bioavailability and evidence of protectiveeffects. Br. J. Nutr. 2010, 104, S67–S90. [CrossRef] [PubMed]29. De Souza, V.R.; Pereira, P.A.P.; da Silva, T.L.T.; de Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of thebioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry,strawberry, blueberry and sweet cherry fruits. Food Chem. 2014, 156, 362–368. [CrossRef] [PubMed]
30. Carey, A.N.; Fisher, D.R.; Rimando, A.M.; Gomes, S.M.; Bielinski, D.F.; Shukitt-Hale, B. Stilbenes andanthocyanins reduce stress signaling in BV-2 mouse microglia. J. Agric. Food Chem. 2013, 61, 5979–5986.[CrossRef] [PubMed]
31. Poulose, S.M.; Fisher, D.R.; Larson, J.; Bielinski, D.F.; Rimando, A.M.; Carey, A.N.; Schauss, A.G.;Shukitt-Hale, B. Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatorystress signaling in mouse brain BV-2 microglial cells. J. Agric. Food Chem. 2012, 60, 1084–1093. [CrossRef][PubMed]
32. Lau, F.C.; Bielinski, D.F.; Joseph, J.A. Inhibitory effects of blueberry extract on the production of inflammatorymediators in lipopolysaccharide-activated BV2 microglia. J. Neurosci. Res. 2007, 85, 1010–1017. [CrossRef][PubMed]
33. Burguillos, M.A.; Deierborg, T.; Kavanagh, E.; Persson, A.; Hajji, N.; Garcia-Quintanilla, A.; Cano, J.;
Brundin, P.; Englund, E.; Venero, J.L.; et al. Caspase signalling controls microglia activation and neurotoxicity.
Nature 2011, 472, 319–324. [CrossRef] [PubMed]
34. Williams, P.; Sorribas, A.; Howes, M.-J.R. Natural products as a source of Alzheimer’s drug leads.
Nat. Prod. Rep. 2011, 28, 48–77. [CrossRef] [PubMed]
35. Essa, M.M.; Vijayan, R.K.; Castellano-Gonzalez, G.; Memon, M.A.; Braidy, N.; Guillemin, G.J. Neuroprotective
effect of natural products against Alzheimer’s disease. Neurochem. Res 2012, 37, 1829–1842. [CrossRef]
36. Divino da Rocha, M.; Pereira Dias Viegas, F.; Cristina Campos, H.; Carolina Nicastro, P.; Calve Fossaluzza, P.;Alberto Manssour Fraga, C.; Barreiro Eliezer, J.; Viegas, C. The role of natural products in the discovery ofnew drug candidates for the treatment of neurodegenerative disorders II: Alzheimer’s disease. CNS Neurol.Disord. Drug Targets 2011, 10, 251–270. [CrossRef]

37. Kang, T.H.; Hur, J.Y.; Kim, H.B.; Ryu, J.H.; Kim, S.Y. Neuroprotective effects of the cyanidin-3-O- -D-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neurosci. Lett. 2006, 391,122–126. [CrossRef] [PubMed]
38. Ghosh, D.; McGhie, T.K.; Zhang, J.; Adaim, A.; Skinner, M. Effects of anthocyanins and other phenolics ofboysenberry and blackcurrant as inhibitors of oxidative stress and damage to cellular DNA in SH-SY5Y andHL-60 cells. J. Sci. Food Agric. 2006, 86, 678–686. [CrossRef]
39. Khan, M.S.; Ali, T.; Kim, M.W.; Jo, M.H.; Jo, M.G.; Badshah, H.; Kim, M.O. Anthocyanins protect againstLPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mousecortex. Neurochem. Int. 2016, 100, 1–10. [CrossRef] [PubMed]
40. Shah, S.A.; Amin, F.U.; Khan, M.; Abid, M.N.; Rehman, S.U.; Kim, T.H.; Kim, M.W.; Kim, M.O. Anthocyaninsabrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegenerationin postnatal rat brain. J. Neuroinflamm. 2016, 13, 286. [CrossRef] [PubMed]
41. Meireles, M.; Marques, C.; Norberto, S.; Fernandes, I.; Mateus, N.; Rendeiro, C.; Spencer, J.P.; Faria, A.;Calhau, C. The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standardor high-fat diet. J. Nutr. Bioche. 2015, 26, 1166–1173. [CrossRef] [PubMed]
42. Chen, X.-Y.; Huang, I.-M.; Hwang, L.S.; Ho, C.-T.; Li, S.; Lo, C.-Y. Anthocyanins in blackcurrant effectivelyprevent the formation of advanced glycation end products by trapping methylglyoxal. J. Funct. Foods 2014,8, 259–268. [CrossRef]
43. Thilavech, T.; Ngamukote, S.; Belobrajdic, D.; Abeywardena, M.; Adisakwattana, S. Cyanidin-3-rutinosideattenuates methylglyoxal-induced protein glycation and DNA damage via carbonyl trapping ability andscavenging reactive oxygen species. BMC Complement. Altern. Med. 2016, 16, 138. [CrossRef] [PubMed]

44. Wang, W.; Yagiz, Y.; Buran, T.J.; Nunes, C.D.N.; Gu, L. Phytochemicals from berries and grapes inhibitedthe formation of advanced glycation end-products by scavenging reactive carbonyls. Food Res. Int. 2011, 44,
2666–2673. [CrossRef]
45. Liu, H.; Liu, H.; Wang, W.; Khoo, C.; Taylor, J.; Gu, L. Cranberry phytochemicals inhibit glycation of humanhemoglobin and serum albumin by scavenging reactive carbonyls. Food Funct. 2011, 2, 475–482. [CrossRef]

46. Bastianetto, S.; Yao, Z.X.; Papadopoulos, V.; Quirion, R. Neuroprotective effects of green and black teas andtheir catechin gallate esters against -amyloid-induced toxicity. Eur. J. Neurosci. 2006, 23, 55–64. [CrossRef]
47. Chauhan, N.; Wang, K.; Wegiel, J.; Malik, M.N. Walnut extract inhibits the fibrillization of amyloidbeta-protein, and also defibrillizes its preformed fibrils. Curr. Alzheimer Res. 2004, 1, 183–188. [CrossRef][PubMed]
48. McGhie, T.K.; Walton, M.C. The bioavailability and absorption of anthocyanins: Towards a betterunderstanding. Mol. Nutr. Food Res. 2007, 51, 702–713. [CrossRef] [PubMed]
49. McDougall, G.J.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Assessing potential bioavailability of raspberryanthocyanins using an in vitro digestion system. J. Agric. Food Chem. 2005, 53, 5896–5904. [CrossRef][PubMed]
50. Schroeter, H.; Spencer, J.P.; Rice-Evans, C.; Williams, R.J. Flavonoids protect neurons from oxidizedlow-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3.Biochem. J. 2001, 358, 547–557. [CrossRef] [PubMed]
51. Prior, R.L.; Wu, X. Anthocyanins: Structural characteristics that result in unique metabolic patterns andbiological activities. Free Rad. Res. 2006, 40, 1014–1028. [CrossRef] [PubMed]
52. Singh, M.; Arseneault, M.; Sanderson, T.; Murthy, V.; Ramassamy, C. Challenges for research on polyphenolsfrom foods in Alzheimer’s disease: Bioavailability, metabolism, and cellular and molecular mechanisms.J. Agric. Food Chem. 2008, 56, 4855–4873. [CrossRef] [PubMed]
53. Ebrahimi, A.; Schluesener, H. Natural polyphenols against neurodegenerative disorders: Potentials andpitfalls. Ageing Res. Rev. 2012, 11, 329–345. [CrossRef] [PubMed]
54. Seeram, N.; Momin, R.; Nair, M.; Bourquin, L. Cyclooxygenase inhibitory and antioxidant cyanidin glycosidesin cherries and berries. Phytomedicine 2001, 8, 362–369. [CrossRef] [PubMed]
55. Kim, B.; Bae, M.; Park, Y.; Ma, H.; Yuan, T.; Seeram, N.; Lee, J. Blackcurrant anthocyanins stimulatedcholesterol transport via post-transcriptional induction of LDL receptor in Caco-2 cells. Eur. J. Nutr. 2017.[CrossRef] [PubMed]
56. Zhang, Y.; Seeram, N.P.; Lee, R.; Feng, L.; Heber, D. Isolation and identification of strawberry phenolicswith antioxidant and human cancer cell antiproliferative properties. J. Agric. Food Chem. 2008, 56, 670–675.[CrossRef] [PubMed]

57. Jean-Gilles, D.; Li, L.; Ma, H.; Yuan, T.; Chichester, C.O.; Seeram, N.P. Anti-inflammatory effects ofpolyphenolic-enriched red raspberry extract in an antigen-induced arthritis rat model. J. Agric. Food Chem.
2012, 60, 5755–5762. [CrossRef] [PubMed]
58. Ma, H.; DaSilva, N.A.; Liu, W.; Nahar, P.P.; Wei, Z.; Liu, Y.; Pham, P.T.; Crews, R.; Vattem, D.A.;Slitt, A.L. Effects of a standardized phenolic-enriched maple syrup extract on -amyloid aggregation,neuroinflammation in microglial and neuronal cells, and -amyloid induced neurotoxicity inCaenorhabditis elegans. Neurochem. Res. 2016, 41, 2836–2847. [CrossRef] [PubMed]
59. Ma, H.; Xu, J.; DaSilva, N.A.; Wang, L.; Wei, Z.; Guo, L.; Johnson, S.L.; Lu, W.; Xu, J.; Gu, Q. Cosmeticapplications of glucitol-core containing gallotannins from a proprietary phenolic-enriched red maple(Acer rubrum) leaves extract: Inhibition of melanogenesis via down-regulation of tyrosinase and melanogenicgene expression in B16F10 melanoma cells. Arch. Dermatol. Res. 2017, 309, 265–274. [PubMed]
60. DaSilva, N.A.; Nahar, P.P.; Ma, H.; Eid, A.; Wei, Z.; Meschwitz, S.; Zawia, N.H.; Slitt, A.L.; Seeram, N.P.Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro.Nutr. Neurosci. 2017. [CrossRef] [PubMed]

Evaluation of Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry,Cranberry, Red Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation, Anti- -Amyloid Aggregation, and Microglial Neuroprotective Effects
Hang Ma 1,2,3,† ID , Shelby L. Johnson 2,3,†, Weixi Liu 4, Nicholas A. DaSilva 2,3,Susan Meschwitz 5, Joel A. Dain 4 and Navindra P. Seeram 2,3,*

1 School of Chemical and Environment Engineering, Wuyi University; International Healthcare Innovation
Institute (Jiangmen), Jiangmen 529020, Guangdong, China;
2 Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences,
College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (S.L.J.); (N.A.D.)
3 George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
4 Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA; (W.L.); (J.A.D.)
5 Department of Chemistry, Salve Regina University, Newport, RI 02840, USA;
* Correspondence:; Tel.: +1-401-874-9367










ABSTRACT:Glycation is associated with several neurodegenerative disorders, including Alzheimer’s disease (AD), where it potentiates the aggregation and toxicity of proteins such as -amyloid (A ). Published studies support the anti-glycation and neuroprotective effects of several polyphenol-rich fruits, including berries, which are rich in anthocyanins. Herein, blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts were evaluated for: (1) total phenolic and anthocyanins contents, (2) free radical (DPPH) scavenging and reactive carbonyl species (methylglyoxal; MGO) trapping, (3) anti-glycation (using BSA-fructose and BSA-MGO models),
(4) anti-A  aggregation (using thermal- and MGO-induced fibrillation models), and, (5) murine microglia (BV-2) neuroprotective properties. Berry crude extracts (CE) were fractionated to yield anthocyanins-free (ACF) and anthocyanins-enriched (ACE) extracts. The berry ACEs (at 100 g/mL) showed superior free radical scavenging, reactive carbonyl species trapping, and anti-glycation effects compared to their respective ACFs. The berry ACEs (at 100 g/mL) inhibited both thermaland MGO-induced A  fibrillation. In addition, the berry ACEs (at 20 g/mL) reduced H2O2-induced reactive oxygen species production, and lipopolysaccharide-induced nitric oxide species in BV-2 microglia as well as decreased H2O2-induced cytotoxicity and caspase-3/7 activity in BV-2 microglia. The free radical scavenging, reactive carbonyl trapping, anti-glycation, anti-A  fibrillation, and microglial neuroprotective effects of these berry extracts warrant further in vivo studies to evaluate their potential neuroprotective effects against AD.