ABSTRACT:Berries and other anthocyanin-rich treatments have prevented weight gain and adiposity in rodent models of diet-induced obesity. Their efficacy may be explained by modulation of energy substrate utilization. However, this effect has never been translated to humans. The objective of this study was to evaluate the effects of berry intake on energy substrate use and glucoregulation in volunteers consuming a high-fat diet. Twenty-seven overweight or obese men were enrolled in a randomized, placebo-controlled crossover study with two treatment periods. Subjects were fed an investigator controlled, high-fat (40% of energy from fat) diet which contained either 600 g/day blackberries (BB, 1500 mg/day flavonoids) or a calorie and carbohydrate matched amount of gelatin(GEL, flavonoid-free control) for seven days prior to a meal-based glucose tolerance test (MTT) in combination with a 24 h stay in a room-sized indirect calorimeter. The washout period that separated the treatment periods was also seven days. The BB treatment resulted in a significant reduction in average 24 h respiratory quotient (RQ) (0.810 vs. 0.817, BB vs. GEL, p = 0.040), indicating increased fat oxidation. RQ during the MTT was significantly lower with the BB treatment (0.84) compared to GEL control (0.85), p = 0.004. A 4 h time isolation during dinner showed similar treatment effects,where RQ was reduced and fat oxidation increased with BB (0.818 vs. 0.836, 28 vs. 25 g, respectively;BB vs. GEL treatments). The glucose AUC was not different between the BB and GEL treatments during the MTT (3488 vs. 4070 mgmin/dL, respectively, p = 0.12). However, the insulin AUC was significantly lower with the BB compared to the GEL control (6485 vs. 8245 Umin/mL, p = 0.0002),and HOMA-IR improved with BB (p = 0.0318). Blackberry consumption may promote increased fat oxidation and improved insulin sensitivity in overweight or obese males fed a high fat diet.

KEY WORDS: berries; indirect calorimetry; overweight; obesity; fat oxidation; glucose; insulin sensitivity; anthocyanins; flavonoids; polyphenols

链接全文

参考文献:

1. Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of childhood and adult obesity in the united states, 2011–2012. JAMA 2014, 311, 806–814. [CrossRef] [PubMed]
2. Centers for Disease Control, Department of Health and Human Services. Adult Obesity Causes& Consequences. Available online: https://www.cdc.gov/obesity/adult/causes.html (accessed on 12 January 2017).

3. Dunkley, A.J.; Charles, K.; Gray, L.J.; Camosso-Stefinovic, J.; Davies, M.J.; Khunti, K. Effectiveness of interventions for reducing diabetes and cardiovascular disease risk in people with metabolic syndrome: Systematic review and mixed treatment comparison meta-analysis. Diabetes Obes. Metab. 2012, 14, 616–625.
4. Dauchet, L.; Amouyel, P.; Hercberg, S.; Dallongeville, J. Fruit and vegetable consumption and risk of coronary heart disease: A meta-analysis of cohort studies. J. Nutr. 2006, 136, 2588–2593. [CrossRef] [PubMed]
5. Wang, X.; Ouyang, Y.Y.; Liu, J.; Zhu, M.M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. Br. Med. J. 2014, 349, g4490.
6. Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remon, A.; Martinez-Gonzalez, M.A.; Lopez-Sabater, M.C.;Covas, M.I.; Corella, D.; Salas-Salvado, J.; Gomez-Gracia, E.; Lapetra, J.; et al. Polyphenol intake and mortality risk: A re-analysis of the predimed trial. BMC Med. 2014, 12, 77. 
7. Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014,30, 134–144. 
8. Tsuda, T.; Horio, F.; Uchida, K.; Aoki, H.; Osawa, T. Dietary cyanidin 3-o-beta-d-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr. 2003, 133, 2125–2130. 
9. Farrell, N.J.; Norris, G.H.; Ryan, J.; Porter, C.M.; Jiang, C.; Blesso, C.N. Black elderberry extract attenuates inflammation and metabolic dysfunction in diet-induced obese mice. Br. J. Nutr. 2015, 114, 1123–1131.
10. Heyman, L.; Axling, U.; Blanco, N.; Sterner, O.; Holm, C.; Berger, K. Evaluation of beneficial metabolic effects of berries in high-fat fed c57bl/6j mice. J. Nutr. Metab. 2014, 2014. Available online: https://www.hindawi.
com/journals/jnme/2014/403041/abs/ (accessed on 4 April 2014). [CrossRef] [PubMed]
11. Prior, R.L.; Wilkes, S.; Rogers, T.; Khanal, R.C.; Wu, X.L.; Hager, T.J.; Hager, A.; Howard, L. Dietary black raspberry anthocyanins do not alter development of obesity in mice fed an obesogenic high-fat diet. J. Agric.
Food Chem. 2010, 58, 3977–3983. 
12. Prior, R.L.; Wilkes, S.E.; Rogers, T.R.; Khanal, R.C.; Wu, X.L.; Howard, L.R. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet. J. Agric. Food Chem.
2010, 58, 3970–3976.
13. Prior, R.L.; Wu, X.L.; Gu, L.W.; Hager, T.J.; Hager, A.; Howard, L.R. Whole berries versus berry anthocyanins: Interactions with dietary fat levels in the c57bl/6j mouse model of obesity. J. Agric. Food Chem. 2008, 56,
647–653. 
14. Seymour, E.M.; Singer, A.A.M.; Kirakosyan, A.; Urcuyo-Llanes, D.E.; Kaufman, P.B.; Bolling, S.F. Altered hyperlipidemia, hepatic steatosis, and hepatic peroxisome proliferator-activated receptors in rats with intake of tart cherry. J. Med. Food 2008, 11, 252–259. 
15. Seymour, E.M.; Tanone, I.I.; Urcuyo-Llanes, D.E.; Lewis, S.K.; Kirakosyan, A.; Kondoleon, M.G.; Kaufman, P.B.; Bolling, S.F. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. J. Med. Food 2011,14, 1511–1518. 
16. Takikawa, M.; Inoue, S.; Horio, F.; Tsuda, T. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of amp-activated protein kinase in diabetic mice.
J. Nutr. 2010, 140, 527–533.
17. Webb, P. 24-hour energy expenditure and the menstrual cycle. Am. J. Clin. Nutr. 1986, 44, 614–619.
18. 2015–2020 Dietary Guidelines for Americans; Department of Health and Human Services and Department of Agriculture: Washington, DC, USA, 2015.
19. Redan, B.W.; Albaugh, G.P.; Charron, C.S.; Novotny, J.A.; Ferruzzi, M.G. Adaptation in caco-2 human intestinal cell differentiation and phenolic transport with chronic exposure to blackberry (rubus sp.) extract.
J. Agric. Food Chem. 2017, 65, 2694–2701. 
20. Seale, J.L.; Rumpler, W.V.; Moe, P.W. Description of a direct-indirect room-sized calorimeter. Am. J. Physiol. 1991, 260, 306–320. [CrossRef] [PubMed]21. Gribok, A.; Hoyt, R.; Buller, M.; Rumpler, W. On the accuracy of instantaneous gas exchange rates, energy expenditure and respiratory quotient calculations obtained from indirect whole room calorimetry.Physiol. Meas. 2013, 34, 737–755. 
22. Gribok, A.; Leger, J.L.; Stevens, M.; Hoyt, R.; Buller, M.; Rumpler, W. Measuring the short-term substrate utilization response to high-carbohydrate and high-fat meals in the whole-body indirect calorimeter.
Physiol. Rep. 2016, 4, e12835. 
23. Livesey, G.; Elia, M. Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: Evaluation of errors with special reference to the detailed composition
of fuels. Am. J. Clin. Nutr. 1988, 47, 608–628.
24. Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of homa modeling. Diabetes Care 2004, 27, 1487–1495.
25. Bhaswant, M.; Fanning, K.; Netzel, M.; Mathai, M.L.; Panchal, S.K.; Brown, L. Cyanidin 3-glucoside improves diet-induced metabolic syndrome in rats. Pharmacol. Res. 2015, 102, 208–217.
26. Wei, X.; Wang, D.; Yang, Y.; Xia, M.; Li, D.; Li, G.; Zhu, Y.; Xiao, Y.; Ling, W. Cyanidin-3-o-beta-glucoside improves obesity and triglyceride metabolism in kk-ay mice by regulating lipoprotein lipase activity. J. Sci.Food Agric. 2011, 91, 1006–1013. 
27. Huang, H.H.; Chen, G.Z.; Liao, D.; Zhu, Y.K.; Xue, X.Y. Effects of berries consumption on cardiovascular riskfactors: A meta-analysis with trial sequential analysis of randomized controlled trials. Sci. Rep. UK 2016,23625. 
28. Guo, X.; Yang, B.; Tan, J.; Jiang, J.; Li, D. Associations of dietary intakes of anthocyanins and berry fruits with risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective cohort studies. Eur J.
Clin. Nutr. 2016, 70, 1360–1367. 
29. Qin, Y.; Xia, M.; Ma, J.; Hao, Y.; Liu, J.; Mou, H.; Cao, L.; Ling,W. Anthocyanin supplementation improvesserum ldl- and hdl-cholesterol concentrations associated with the inhibition of cholesteryl ester transferprotein in dyslipidemic subjects. Am. J. Clin. Nutr. 2009, 90, 485–492. 
30. Zhu, Y.; Xia, M.; Yang, Y.; Liu, F.; Li, Z.; Hao, Y.; Mi, M.; Jin, T.; Ling,W. Purified anthocyanin supplementationimproves endothelial function via no-cgmp activation in hypercholesterolemic individuals. Clin. Chem. 2011,
57, 1524–1533. 
31. Zhu, Y.; Huang, X.; Zhang, Y.; Wang, Y.; Liu, Y.; Sun, R.; Xia, M. Anthocyanin supplementationimproves hdl-associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects withhypercholesterolemia. J. Clin. Endocrinol. Metab. 2014, 99, 561–569. 
32. Hoggard, N.; Cruickshank, M.; Moar, K.M.; Bestwick, C.; Holst, J.J.; Russell, W.; Horgan, G. A singlesupplement of a standardised bilberry (Vaccinium myrtillus L.) extract (36% wet weight anthocyanins)modifies glycaemic response in individuals with type 2 diabetes controlled by diet and lifestyle. J. Nutr. Sci.2013, 2, e22.
33. Stull, A.J.; Cash, K.C.; Johnson, W.D.; Champagne, C.M.; Cefalu, W.T. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J. Nutr. 2010, 140, 1764–1768. 
34. Stull, A.J.; Cash, K.C.; Champagne, C.M.; Gupta, A.K.; Boston, R.; Beyl, R.A.; Johnson, W.D.; Cefalu, W.T.Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome:A randomized, double-blind, placebo-controlled clinical trial. Nutrients 2015, 7, 4107–4123. 
35. Basu, A.; Fu, D.X.; Wilkinson, M.; Simmons, B.; Wu, M.Y.; Betts, N.M.; Du, M.; Lyons, T.J. Strawberries decrease atherosclerotic markers in subjects with metabolic syndrome. Nutr. Res. 2010, 30, 462–469.
36. Basu, A.; Du, M.; Leyva, M.J.; Sanchez, K.; Betts, N.M.; Wu, M.; Aston, C.E.; Lyons, T.J. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010, 140, 1582–1587.
37. Cook, M.D.; Myers, S.D.; Blacker, S.D.;Willems, M.E. New zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. Eur. J. Appl. Physiol. 2015, 115, 2357–2365. 
38. Rumpler, W.; Seale, J.; Clevidence, B.; Judd, J.; Wiley, E.; Yamamoto, S.; Komatsu, T.; Sawaki, T.; Ishikura, Y.;Hosoda, K. Oolong tea increases metabolic rate and fat oxidation in men. J. Nutr. 2001, 131, 2848–2852.

 

Blackberry Feeding Increases Fat Oxidation and Improves Insulin Sensitivity in Overweight and Obese Males

Patrick M. Solverson 1,2, William V. Rumpler 1, Jayme L. Leger 1, Benjamin W. Redan 3 ID ,Mario G. Ferruzzi 4, David J. Baer 1, Thomas W. Castonguay 2 and Janet A. Novotny 1,*

1 USDA, ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA;Patrick.Solverson@ars.usda.gov (P.M.S.); Bill.Rumpler@ars.usda.gov (W.V.R.);Jayme.Leger@gmail.com (J.L.L.); David.Baer@ars.usda.gov (D.J.B.)
2 Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; twc@umd.edu
3 Interdepartmental Nutrition Program, Purdue University, West Lafayette, IN 47906, USA;Benjamin.Redan@fda.hhs.gov
4 Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;mferruz@ncsu.edu* Correspondence: Janet.Novotny@ars.usda.gov; Tel.: +1-301-504-8263

翻译助手

注:将上面摘要外文内容复制后,点击翻译助手,最后粘贴内容至翻译框内。

黑莓历史
黑莓生长
营养成分
健康研究
黑莓与备孕
黑莓与高脂血症

精选页面

联系我们

编辑推荐

国内文献

mail  zghmwhmyj@163.com

国外文献