ABSTRACT:Activation of angiotensin II (Ang II) signaling during aging increases reactive oxygen species (ROS) leading to vascular senescence, a process linked to the onset and progression of cardiovascular diseases (CVD).Consumption of fruits and vegetables, particularly berries, is associated with decreased incidence of CVD, which has mainly been attributed to the polyphenol content of these foods. Thus, the objective of this study was to investigate the role of blackberry (BL), raspberry (RB), and black raspberry (BRB) polyphenol extracts in attenuating Ang II-induced senescence in vascular smooth muscle cells (VSMCs) and to determine the molecular mechanisms involved. BL, RB and BRB polyphenol extracts (200 μg ml−1) attenuated Ang II-induced senescence, denoted by decreased number of cells positive for senescence associated β-galactosidase (SA-β-gal) and down-regulation of p21 and p53 expression, which were associated with decreased ROS levels and Ang II signaling. BL polyphenol extract increased superoxide dismutase (SOD) 1 expression, attenuated the up-regulation of Nox1 expression and the phosphorylation of Akt, p38MAPK and ERK1/2 induced by Ang II, and reduced senescence in response to Nox1 overexpression. In contrast, RB and BRB polyphenol extracts up-regulated the expression of SOD1, SOD2, and glutathione peroxidase 1 (GPx1), but exerted no effect on Nox1 expression nor on senescence induced by Nox1 overexpression. BRB reduced signaling similar to BL, while RB was unable to reduce Akt phosphorylation. Furthermore, we demonstrated that inhibition of Akt, p38MAPK and ERK1/2 as well as down-regulation of Nox1 by siRNA prevented senescence induced by Ang II. Our findings indicate that Ang II-induced senescence is attenuated by BL polyphenols through a Nox1-dependent mechanism and by RB and BRB polyphenols in a Nox1-independent manner, likely by increasing the cellular antioxidant capacity.

KEY WORDS: Berries . Anthocyanins . Ultrasonication . Antioxidant activity . Anti-hyperglycemic effect

链接全文

参考文献:

1 E. G. Lakatta and D. Levy, Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease, Circulation, 2003, 107, 139–146.
2 J. D. Erusalimsky and D. J. Kurz, Cellular senescence in vivo: its relevance in ageing and cardiovascular disease, Exp. Gerontol., 2005, 40, 634–642.
3 J. Campisi and F. d’Adda di Fagagna, Cellular senescence: when bad things happen to good cells, Nat. Rev. Mol. Cell Biol., 2007, 8, 729–740.
4 T. Tchkonia, Y. Zhu, J. van Deursen, J. Campisi and J. L. Kirkland, Cellular senescence and the senescent secretory phenotype: therapeutic opportunities, J. Clin. Invest., 2013, 123, 966–972.
5 T. Kunieda, T. Minamino, J. Nishi, K. Tateno, T. Oyama,T. Katsuno, H. Miyauchi, M. Orimo, S. Okada,M. Takamura, T. Nagai, S. Kaneko and I. Komuro, AngiotensinII induces premature senescence of vascular smoothmuscle cells and accelerates the development of atherosclerosisvia a p21-dependent pathway, Circulation, 2006,114, 953–960.
6 N. Patrushev, B. Seidel-Rogol and G. Salazar, Angiotensin IIrequires zinc and downregulation of the zinc transportersZnT3 and ZnT10 to induce senescence of vascular smoothmuscle cells, PLoS One, 2012, 7, e33211.
7 D. Sorescu, D. Weiss, B. Lassegue, R. E. Clempus, K. Szocs,G. P. Sorescu, L. Valppu, M. T. Quinn, J. D. Lambeth,J. D. Vega, W. R. Taylor and K. K. Griendling, Superoxideproduction and expression of nox family proteins inhuman atherosclerosis, Circulation, 2002, 105, 1429–1435.
8 T. Minamino, T. Yoshida, K. Tateno, H. Miyauchi, Y. Zou,H. Toko and I. Komuro, Ras induces vascular smoothmuscle cell senescence and inflammation in humanatherosclerosis, Circulation, 2003, 108, 2264–2269.9 J. D. Lambeth, Nox enzymes, ROS, and chronic disease: anexample of antagonistic pleiotropy, Free Radical Biol. Med.,2007, 43, 332–347.
10 K. D. Martyn, L. M. Frederick, K. von Loehneysen,M. C. Dinauer and U. G. Knaus, Functional analysis ofNox4 reveals unique characteristics compared to otherNADPH oxidases, Cell. Signalling, 2006, 18, 69–82.
11 F. Chen, S. Haigh, S. Barman and D. J. Fulton, From formto function: the role of Nox4 in the cardiovascular system,Front. Physiol., 2012, 3, 412.
12 A. Nguyen Dinh Cat, A. C. Montezano, D. Burger andR. M. Touyz, Angiotensin II, NADPH oxidase, and redox signalingin the vasculature, Antioxid. Redox Signaling, 2013,19, 1110–1120.
13 F. J. Miller, Jr., M. Filali, G. J. Huss, B. Stanic,A. Chamseddine, T. J. Barna and F. S. Lamb, Cytokine activationof nuclear factor kappa B in vascular smooth musclecells requires signaling endosomes containing Nox1 andClC-3, Circ. Res., 2007, 101, 663–671.
14 K. Bedard and K. H. Krause, The NOX family of ROS-generatingNADPH oxidases: physiology and pathophysiology,Physiol. Rev., 2007, 87, 245–313.

15 L. L. Hilenski, R. E. Clempus, M. T. Quinn, J. D. Lambethand K. K. Griendling, Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells, Arterioscler.,Thromb., Vasc. Biol., 2004, 24, 677–683.
16 A. L. Sheehan, S. Carrell, B. Johnson, B. Stanic, B. Banfiand F. J. Miller, Jr., Role for Nox1 NADPH oxidase inatherosclerosis, Atherosclerosis, 2011, 216, 321–326.
17 A. E. Vendrov, K. C. Vendrov, A. Smith, J. Yuan, A. Sumida,J. Robidoux, M. S. Runge and N. R. Madamanchi, NOX4NADPH Oxidase-Dependent Mitochondrial Oxidative Stressin Aging-Associated Cardiovascular Disease, Antioxid.Redox Signaling, 2015, 23, 1389–1409.
18 S. S. Najjar, A. Scuteri and E. G. Lakatta, Arterial aging: is itan immutable cardiovascular risk factor?, Hypertension,2005, 46, 454–462.
19 A. Benigni, P. Cassis and G. Remuzzi, Angiotensin IIrevisited: new roles in inflammation, immunology andaging, EMBO Mol. Med., 2010, 2, 247–257.
20 S. Eguchi, H. Iwasaki, Y. Hirata, G. D. Frank, E. D. Motley,T. Yamakawa, K. Numaguchi and T. Inagami, Epidermalgrowth factor receptor is indispensable for c-Fos expressionand protein synthesis by angiotensin II, Eur. J. Pharmacol.,1999, 376, 203–206.
21 L. Hunyady and K. J. Catt, Pleiotropic AT1 receptor signalingpathways mediating physiological and pathogenicactions of angiotensin II, Mol. Endocrinol., 2006, 20, 953–970.
22 M. Ushio-Fukai, R. W. Alexander, M. Akers andK. K. Griendling, p38 Mitogen-activated protein kinase is acritical component of the redox-sensitive signaling pathwaysactivated by angiotensin II. Role in vascular smoothmuscle cell hypertrophy, J. Biol. Chem., 1998, 273, 15022–15029.
23 M. Ushio-Fukai, R. W. Alexander, M. Akers, Q. Yin, Y. Fujio,K. Walsh and K. K. Griendling, Reactive oxygen speciesmediate the activation of Akt/protein kinase B by angiotensinII in vascular smooth muscle cells, J. Biol. Chem.,1999, 274, 22699–22704.
24 T. Bruder-Nascimento, P. Chinnasamy, D. F. Riascos-Bernal, S. B. Cau, G. E. Callera, R. M. Touyz, R. C. Tostesand N. E. Sibinga, Angiotensin II induces Fat1 expression/activation and vascular smooth muscle cell migration viaNox1-dependent reactive oxygen species generation, J. Mol.Cell. Cardiol., 2014, 66, 18–26.
25 M. G. Hertog, D. Kromhout, C. Aravanis, H. Blackburn,R. Buzina, F. Fidanza, S. Giampaoli, A. Jansen, A. Menotti,S. Nedeljkovic, et al., Flavonoid intake and long-term riskof coronary heart disease and cancer in the seven countriesstudy, Archives of internal medicine, 1995, 155, 381–386.
26 J. J. Peterson, J. T. Dwyer, P. F. Jacques andM. L. McCullough, Associations between flavonoids andcardiovascular disease incidence or mortality in Europeanand US populations, Nutr. Rev., 2012, 70, 491–508.
27 I. Serraino, L. Dugo, P. Dugo, L. Mondello, E. Mazzon,G. Dugo, A. P. Caputi and S. Cuzzocrea, Protective effects ofcyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascularfailure, Life Sci., 2003, 73, 1097–1114.
28 H. Jia, J. W. Liu, H. Ufur, G. S. He, H. Liqian and P. Chen,The antihypertensive effect of ethyl acetate extract from redraspberry fruit in hypertensive rats, Pharmacogn. Mag.,2011, 7, 19–24.
29 X. Li, Y. Li, V. A. States, S. Li, X. Zhang and R. C. Martin,The effect of black raspberry extracts on MnSOD activity inprotection against concanavalin A induced liver injury,Nutr. Cancer, 2014, 66, 930–937.
30 S. de Pascual-Teresa, D. A. Moreno and C. Garcia-Viguera,Flavanols and anthocyanins in cardiovascular health: areview of current evidence, Int. J. Mol. Sci., 2010, 11, 1679–1703.
31 D. O. Kim and C. Y. Lee, Extraction and Isolation of Polyphenolicsin Current Protocols in Food Analytical Chemistry,2003, 2.1–2.12.
32 L. C. Queires, F. Fauvel-Lafetve, S. Terry, A. De la Taille,J. C. Kouyoumdjian, D. K. Chopin, F. Vacherot,L. E. Rodrigues and M. Crepin, Polyphenols purified fromthe Brazilian aroeira plant (Schinus terebinthifolius,Raddi) induce apoptotic and autophagic cell death ofDU145 cells, Anticancer Res., 2006, 26, 379–387.
33 K. K. Griendling, M. B. Taubman, M. Akers, M. Mendlowitzand R. W. Alexander, Characterization of phosphatidylinositol-specific phospholipase C from cultured vascularsmooth muscle cells, J. Biol. Chem., 1991, 266, 15498–15504.
34 F. Forouzandeh, G. Salazar, N. Patrushev, S. Xiong,L. Hilenski, B. Fei and R. W. Alexander, Metformin beyonddiabetes: pleiotropic benefits of metformin in attenuationof atherosclerosis, J. Am. Heart Assoc., 2014, 3.
35 A. San Martin, R. Foncea, F. R. Laurindo, R. Ebensperger,K. K. Griendling and F. Leighton, Nox1-based NADPHoxidase-derived superoxide is required for VSMC activationby advanced glycation end-products, Free Radical Biol.Med., 2007, 42, 1671–1679.
36 S. Xiong, G. Salazar, A. San Martin, M. Ahmad,N. Patrushev, L. Hilenski, R. R. Nazarewicz, M. Ma,M. Ushio-Fukai and R. W. Alexander, PGC-1 alpha serine
570 phosphorylation and GCN5-mediated acetylation byangiotensin II drive catalase down-regulation and vascularhypertrophy, J. Biol. Chem., 2010, 285, 2474–2487.
37 G. Harada, Q. Neng, T. Fujiki and Y. Katakura, Molecularmechanisms for the p38-induced cellular senescence innormal human fibroblast, J. Biochem., 2014, 156, 283–290.
38 H. Shan, X. Bai and X. Chen, Angiotensin II induces endothelialcell senescence via the activation of mitogen-activatedprotein kinases, Cell Biochem. Funct., 2008, 26, 459–466.
39 K. Wingler, S. Wunsch, R. Kreutz, L. Rothermund, M. Pauland H. H. Schmidt, Upregulation of the vascular NAD(P)Hoxidaseisoforms Nox1 and Nox4 by the renin-angiotensinsystem in vitro and in vivo, Free Radical Biol. Med., 2001,31, 1456–1464.
40 R. E. Clempus and K. K. Griendling, Reactive oxygenspecies signaling in vascular smooth muscle cells, Cardiovasc.Res., 2006, 71, 216–225.

41 C. E. Schreiner, M. Kumerz, J. Gesslbauer, D. Schachner,H. Joa, T. Erker, A. G. Atanasov, E. H. Heiss andV. M. Dirsch, Resveratrol blocks Akt activation inangiotensin II- or EGF-stimulated vascular smooth muscle
cells in a redox-independent manner, Cardiovasc. Res.,2011, 90, 140–147.
42 B. E. Mugabe, F. A. Yaghini, C. Y. Song, C. K. Buharalioglu,C. M. Waters and K. U. Malik, Angiotensin II-inducedmigration of vascular smooth muscle cells is mediated byp38 mitogen-activated protein kinase-activated c-Src
through spleen tyrosine kinase and epidermal growthfactor receptor transactivation, J. Pharmacol. Exp. Ther.,2010, 332, 116–124.
43 S. M. Won, Y. H. Park, H. J. Kim, K. M. Park and W. J. Lee,Catechins inhibit angiotensin II-induced vascular smoothmuscle cell proliferation via mitogen-activated proteinkinase pathway, Exp. Mol. Med., 2006, 38, 525–534.
44 M. Yoshizumi, K. Tsuchiya, K. Kirima, M. Kyaw, Y. Suzakiand T. Tamaki, Quercetin inhibits Shc- and phosphatidylinositol3-kinase-mediated c-Jun N-terminal kinase activationby angiotensin II in cultured rat aortic smooth
muscle cells, Mol. Pharmacol., 2001, 60, 656–665.
45 R. Pantan, J. Tocharus, A. Suksamrarn and C. Tocharus,Synergistic effect of atorvastatin and Cyanidin-3-glucosideon angiotensin II-induced inflammation in vascularsmooth muscle cells, Exp. Cell Res., 2016, 342, 104–112.
46 R. Miyazaki, T. Ichiki, T. Hashimoto, K. Inanaga,I. Imayama, J. Sadoshima and K. Sunagawa, SIRT1, a longevitygene, downregulates angiotensin II type 1 receptorexpression in vascular smooth muscle cells, Arterioscler.,Thromb., Vasc. Biol., 2008, 28, 1263–1269.
47 S. Xu, A. H. Chamseddine, S. Carrell and F. J. Miller, Jr.,Nox4 NADPH oxidase contributes to smooth muscle cellphenotypes associated with unstable atheroscleroticplaques, Redox Biol., 2014, 2, 642–650.

48 Y. P. Wang, L. S. Zhou, Y. Z. Zhao, S. W. Wang, L. L. Chen,L. X. Liu, Z. Q. Ling, F. J. Hu, Y. P. Sun, J. Y. Zhang,C. Yang, Y. Yang, Y. Xiong, K. L. Guan and D. Ye, Regulationof G6PD acetylation by SIRT2 and KAT9 modulatesNADPH homeostasis and cell survival during oxidativestress, EMBO J., 2014, 33, 1304–1320.
49 A. Manea, L. I. Tanase, M. Raicu and M. Simionescu, Transcriptionalregulation of NADPH oxidase isoforms, Nox1and Nox4, by nuclear factor-kappaB in human aorticsmooth muscle cells, Biochem. Biophys. Res. Commun.,
2010, 396, 901–907.
50 A. Manea, S. A. Manea, A. V. Gafencu, M. Raicu andM. Simionescu, AP-1-dependent transcriptional regulationof NADPH oxidase in human aortic smooth muscle cells:role of p22phox subunit, Arterioscler., Thromb., Vasc. Biol.,2008, 28, 878–885.
51 R. Socodato, C. C. Portugal, T. Canedo, I. Domith,N. A. Oliveira, R. Paes-de-Carvalho, J. B. Relvas andM. Cossenza, c-Src deactivation by the polyphenol 3-Ocaffeoylquinicacid abrogates reactive oxygen speciesmediatedglutamate release from microglia and neuronalexcitotoxicity, Free Radical Biol. Med., 2015, 79, 45–55.
52 G. Cheng, B. A. Diebold, Y. Hughes and J. D. Lambeth,Nox1-dependent reactive oxygen generation is regulated byRac1, J. Biol. Chem., 2006, 281, 17718–17726.
53 R. Brigelius-Flohe and M. Maiorino, Glutathione peroxidases,Biochim. Biophys. Acta, 2013, 1830, 3289–3303.
54 S. Chrissobolis, S. P. Didion, D. A. Kinzenbaw,L. I. Schrader, S. Dayal, S. R. Lentz and F. M. Faraci,Glutathione peroxidase-1 plays a major role in protectingagainst angiotensin II-induced vascular dysfunction, Hypertension,
2008, 51, 872–877.
55 J. B. de Haan, C. Bladier, M. Lotfi-Miri, J. Taylor,P. Hutchinson, P. J. Crack, P. Hertzog and I. Kola, Fibroblastsderived from Gpx1 knockout mice display senescentlikefeatures and are susceptible to H2O2-mediated celldeath, Free Radical Biol. Med., 2004, 36, 53–64.
56 N. Makino, Y. Mochizuki, S. Bannai and Y. Sugita, Kineticstudies on the removal of extracellular hydrogen peroxideby cultured fibroblasts, J. Biol. Chem., 1994, 269, 1020–1025.
57 S. Karnati, G. Luers, S. Pfreimer and E. Baumgart-Vogt,Mammalian SOD2 is exclusively located in mitochondriaand not present in peroxisomes, Histochem. Cell Biol., 2013,140, 105–117.
58 A. M. Zafari, M. Ushio-Fukai, M. Akers, Q. Yin, A. Shah,D. G. Harrison, W. R. Taylor and K. K. Griendling, Role ofNADH/NADPH oxidase-derived H2O2 in angiotensinII-induced vascular hypertrophy, Hypertension, 1998, 32,
488–495.
59 Y. J. Cao, Y. M. Zhang, J. P. Qi, R. Liu, H. Zhang andL. C. He, Ferulic acid inhibits H2O2-induced oxidativestress and inflammation in rat vascular smooth musclecells via inhibition of the NADPH oxidase and NF-kappaBpathway, Int. Immunopharmacol., 2015, 28, 1018–1025.

Blackberry, raspberry and black raspberry polyphenol extracts attenuate angiotensin II-induced senescence in vascular smooth muscle cells

Rafaela G. Feresin,a,b Jingwen Huang,a DawnKylee S. Klarich,a Yitong Zhao,a Shirin Pourafshar,a,c Bahram H. Arjmandia,c and Gloria Salazar*a,c

a Rutgers University, SEBS, New Brunswick, NJ 08901, USA
b North Carolina State University, Kannapolis, NC, USA

翻译助手

注:将上面摘要外文内容复制后,点击翻译助手,最后粘贴内容至翻译框内。

国外文献

mail  zghmwhmyj@163.com

国内文献

编辑推荐

联系我们

精选页面

黑莓与高脂血症
黑莓与备孕
健康研究
营养成分
黑莓生长
黑莓历史