(1) Cooke, D.; Steward, W. P.; Gescher, A. J.;Marczylo, T. Anthocyans from fruits and vegetables—Does bright colour signal cancer chemopreventive activity?. Eur. J. Cancer 2005, 41, 1931–40.
(2) Duthie, G. G.; Duthie, S. J.; Kyle, J. A. M. Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutr. Res. Rev. 2000, 13, 79–106.
(3) Hertog, M. G.; Hollman, P. C.; Katan, M. B.; Kromhout, D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr. Cancer 1993, 20, 21–29.
(4) Prior, R. L.; Wu, X. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic.Res. 2006, 40, 1014–28.
(5) Cooke, D.; Schwarz, M.; Boocock, D.; Winterhalter, P.; Steward,W. P.; Gescher, A. J.; Marczylo, T. H. Effect of cyanidin-3-glucoside and an anthocyanin mixture from bilberry on adenoma development in the ApcMin mouse model of intestinal carcinogenesis—Relationship with tissue anthocyanin levels. Int. J. Cancer 2006, 119, 2213–20.
(6) Kang, S. Y.; Seeram, N. P.; Nair, M. G.; Bourquin, L. D. Tart cherry anthocyanins inhibit tumor development in Apc(Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett. 2003,194, 13–9.
(7) Chen, P. N.; Chu, S. C.; Chiou, H. L.; Chiang, C. L.; Yang, S. F.;Hsieh, Y. S. Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutr. Cancer 2005, 53, 232–243.
(8) Ding, M.; Feng, R.; Wang, S. Y.; Bowman, L.; Lu, Y.; Qian, Y.;Castranova, V.; Jiang, B. H.; Shi, X. Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. J. Biol. Chem. 2006, 281, 17359–68.
(9) Lamy, S.; Blanchette, M.; Michaud-Levesque, J.; Lafleur, R.;Durocher, Y.; Moghrabi, A.; Barrette, S.; Gingras, D.; Beliveau, R.Delphinidin, a dietary anthocyanidin, inhibits vascular endothelialgrowth factor receptor-2 phosphorylation. Carcinogenesis 2006, 27,989–96.
(10) Afaq, F.; Zaman, N.; Khan, N.; Syed, D. N.; Sarfaraz, S.; Zaid,M. A.; Mukhtar, H. Inhibition of epidermal growth factor receptorsignaling pathway by delphinidin, an anthocyanidin in pigmented fruitsand vegetables. Int. J. Cancer 2008, 123, 1508–15.
(11) Fridrich, D.; Teller, N.; Esselen, M.; Pahlke, G.; Marko, D.Comparison of delphinidin, quercetin and ()-epigallocatechin-3-gallate as inhibitors of the EGFR and the ErbB2 receptor phosphorylation.Mol. Nutr. Food Res. 2008, 52, 815–22.
(12) Lee, S. H.; Park, S. M.; Park, S. M.; Park, J. H.; Shin, D. Y.; Kim,G. Y.; Ryu, C. H.; Shin, S. C.; Jung, J. M.; Kang, H. S.; Lee, W. S.; Choi,Y. H. Induction of apoptosis in human leukemia U937 cells byanthocyanins through down-regulation of Bcl-2 and activation ofcaspases. Int. J. Oncol. 2009, 34, 1077–83.
(13) Hafeez, B. B.; Siddiqui, I. A.; Asim, M.; Malik, A.; Afaq, F.;Adhami, V. M.; Saleem, M.; Din, M.; Mukhtar, H. A dietary anthocyanidindelphinidin induces apoptosis of human prostate cancer PC3 cellsin vitro and in vivo: Involvement of nuclear factor-kappaB signaling.Cancer Res. 2008, 68, 8564–72.
(14) Seeram, N. P.; Adams, L. S.; Zhang, Y.; Lee, R.; Sand, D.;Scheuller, H. S.; Heber, D. Blackberry, black raspberry, blueberry,cranberry, red raspberry, and strawberry extracts inhibit growth andstimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem.2006, 54, 9329–39.
(15) Jo, J. Y.; Gonzalez de Mejia, E.; Lila, M. A. Catalytic inhibition ofhuman DNA topoisomerase II by interactions of grape cell culturepolyphenols. J. Agric. Food Chem. 2006, 54, 2083–7.
(16) Habermeyer, M.; Fritz, J.; Barthelmes, H. U.; Christensen,M. O.; Larsen, M. K.; Boege, F.; Marko, D. Anthocyanidins modulatethe activity of human DNA topoisomerases I and II and affect cellularDNA integrity. Chem. Res. Toxicol. 2005, 18, 1395–1404.
(17) Esselen, M.; Fritz, J.; Hutter, M.; Marko, D. Delphinidinmodulates the DNA-damaging properties of topoisomerase II poisons.Chem. Res. Toxicol. 2009, 22, 554–564.
(18) Kahle, K.; Kraus, M.; Scheppach, W.; Ackermann, M.; Ridder,F.; Richling, E. Studies on apple and blueberry fruit constituents: Do thepolyphenols reach the colon after ingestion?. Mol. Nutr. Food Res. 2006,50, 418–423.
(19) Yi, W.; Akoh, C. C.; Fischer, J.; Krewer, G. Absorption ofanthocyanins from blueberry extracts by caco-2 human intestinal cellmonolayers. J. Agric. Food Chem. 2006, 54, 5651–8.
(20) Kern, M.; Fridrich, D.; Reichert, J.; Skrbek, S.; Nussher, A.;Hofem, S.; Vatter, S.; Pahlke, G.; R€ufer, C. E.; Marko, D. Limitedstability in cell culture medium and hydrogen peroxide formation affectthe growth inhibitory properties of delphinidin and its degradationproduct gallic acid. Mol. Nutr. Food Res. 2007, 51, 1163–72.
(21) Fleschhut, J.; Kratzer, F.; Rechkemmer, G.; Kulling, S. E.Stability and biotransformation of various dietary anthocyanins in vitro.Eur. J. Nutr. 2006, 45, 7–18.
(22) Seeram, N. P.; Bourquin, L. D.; Nair, M. G. Degradationproducts of cyanidin glucosides from tart cherries and their bioactivities.J. Agric. Food Chem. 2001, 49, 4924–9.
(23) Keppler, K.; umpf, H. U. Metabolism of anthocyanins and theirphenolic degradation products by the intestinal microflora. Bioorg. Med.Chem. 2005, 13, 5195–205.
(24) Wu, X.; Pittman, H. E.; Hager, T.; Hager, A.; Howard, L.; Prior,R. L. Phenolic acids in black raspberry and in the gastrointestinal tract ofpigs following ingestion of black raspberry. Mol. Nutr. Food Res. 2009, 53(Suppl 1), S76–S84.
(25) Vitaglione, P.; Donnarumma, G.; Napolitano, A.; Galvano, F.;Gallo, A.; Scalfi, L.; Fogliano, V. PCA is the major human metabolite ofcyanidin-glucosides. J. Nutr. 2007, 137, 2043–8.
(26) Roques, S. C.; Landrault, N.; Teissedre, P. L.; Laurent, C.;Besanc-on, P.; Rouane, J. M.; Caporiccio, B. Hydrogen peroxide generationin caco-2 cell culture medium by addition of phenolic compounds:Effect of ascorbic acid. Free Radic. Res. 2002, 36, 593–9.
(27) Long, L. H.; Clement, M. V.; Halliwell, B. Artifacts in cellculture: Rapid generation of hydrogen peroxide on addition of ()-epigallocatechin, ()-epigallocatechin gallate, (þ)-catechin, and quercetinto commonly used cell culture media. Biochem. Biophys. Res.Commun. 2000, 273, 50–3.
(28) Wee, L. M.; Long, L. H.; Whiteman, M.; Halliwell, B. Factorsaffecting the ascorbate- and phenolic-dependent generation of hydrogenperoxide in Dulbecco’s modified Eagle's medium. Free Radic. Res. 2003,37, 1123–30.
(29) Dashwood, W. M.; Orner, G. A.; Dashwood, R. H. Inhibitionof β-catenin/Tcf activity by white tea, green tea, and epigallocatechin--3-gallate (EGCG):Minor contribution ofH2O2 at physiologically relevantEGCG concentrations. Biochem. Biophys. Res. Commun. 2002, 296, 584–8.
(30) Lapidot, T.; Walker, M. D.; Kanner, J. Can apple antioxidantsinhibit tumor cell proliferation? Generation of H2O2 during interactionof phenolic compounds with cell culture media. J. Agric. Food Chem.2002, 50, 3156–60.
(31) Ernst., I.; Wagner, A. E.; Lipinski, S.; Skrbek, S.; R€ufer, C. E.;Desel, C.; Rimbach, G. Cellular uptake, stability, and gene regulatoryactivity of cyanidin in human keratinocytes. Pharmacol. Res. 2010,61, 253–8.
(32) Stracke, B. A.; R€ufer, C. E.; Weibel, F. P.; Bub, A.; Watzl, B.Three-year comparison of the polyphenol content and the antioxidantcapacity in organically and conventionally produced apples (Malusdomestica Bork., cultivar Golden Delicious). J. Agric. Food Chem. 2009,57, 4598–605.
(33) Stracke, B. A.; R€ufer, C. E.; Bub, A.; Seifert, S.; Weibel, F. P.;Kunz, C.; Watzl, B. No effect of the farming system (organic/conventional)on the bioavailability of polyphenols from apples (Malusdomestica Bork., cultivar Golden Delicious) in healthy men—A comparativestudy. Eur. J. Nutr. 2010, 4, 301–10.
(34) Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.;Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R. Newcolorimetric cytotoxicity assay for anticancer-drug screening. J. Natl.Cancer Inst. 1990, 82, 1107–12.
(35) Gedik, C. M.; Wood, S. G.; Collins, A. R. Measuring oxidativedamage to DNA; HPLC and the comet assay compared. Free Radic Res.1998, 29, 609–15.
(36) Marko, D.; Puppel, N.; Tjaden, Z.; Jakobs, S.; Pahlke, G. Thesubstitution pattern of anthocyanidins affects different cellular signalingcascades regulating cell proliferation. Mol. Nutr. Food Res. 2004,48, 318–25.
(37) Katsube, N.; Iwashita, K.; Tsushida, T.; Yamaki, K.; Kobori, M.Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus)and the anthocyanins. J. Agric. Food Chem. 2003, 51, 68–75.
(38) Olsson, M. E.; Gustavsson, K. E.; Andersson, S.; Nilsson, A.;Duan, R. D. Inhibition of cancer cell proliferation in vitro by fruit andberry extracts and correlations with antioxidant levels. J. Agric. FoodChem. 2004, 52, 7264–71.
(39) Woodward, G.; Kroon, P.; Cassidy, A.; Kay, C. Anthocyaninstability and recovery: Implications for the analysis of clinical andexperimental samples. J. Agric. Food Chem. 2009, 57, 5271–5278.
(40) Bandele, O. J.; Osheroff, N. ()-Epigallocatechin gallate, amajor constituent of green tea, poisons human type II topoisomerases.Chem. Res. Toxicol. 2008, 21, 936–43.
(41) Schmidt, F.; Knobbe, C. B.; Frank, B.; Wolburg, H.; Weller, M.The topoisomerase II inhibitor, genistein, induces G2/M arrest andapoptosis in human malignant glioma cell lines. Oncol. Rep. 2008,19, 1061–6.
(42) Esselen, M.; Fritz, J.; Hutter, M.; Teller, N.; Marczylo, T. H.;Gescher, A. J.; Marko, D. Anthocyanin-rich extracts suppress the DNAdamagingeffects of topoisomerase poisons in human cancer cells.Mol. Nutr. Food Res. 2011, 55 (Suppl 1), S14353.
(43) Fridrich, D.; Kern, M.; Fritz, J.; Pahlke, G.; K€ohler, N.;Winterhalter, P.; Marko, D. The epidermal growth factor receptor andhuman topoisomerases represent potential cellular targets of oligomericprocyanidins. Mol. Nutr. Food Res. 2007, 51, 192–200.
(44) Alwerdt, J. L.; Seigler, D. S.; Gonzalez de Mejia, E.; Yousef,G. G.; Lila, M. A. Influence of alternative liquid chromatographytechniques on the chemical complexity and bioactivity of isolatedproanthocyanidin mixtures. J. Agric. Food Chem. 2008, 56, 1896–906.
(45) Kahle, K.; Kraus, M.; Scheppach, W.; Ackermann, M.; Ridder,F.; Richling, E. Studies on apple and blueberry fruit constituents: Do thepolyphenols reach the colon after ingestion?. Mol. Nutr. Food Res. 2006,50, 418–423.
(46) Sariburun, E.; Sahin, S.; Demir, C.; T€urkben, C.; Uylas-er, V.Phenolic content and antioxidant activity of raspberry and blackberrycultivars. J. Food Sci. 2010, 75, 328–335.

Anthocyanin-Rich Blackberry Extract Suppresses the DNA-Damaging Properties of Topoisomerase I and II Poisons in Colon Carcinoma Cells
Melanie Esselen,† Ute Boettler,‡ Nicole Teller,‡ Simone B€achler,‡ Melanie Hutter,§ Corinna E. R€ufer,||Susanne Skrbek,^ and Doris Marko*,‡


†Section of Food Chemistry and Toxicology, Technical University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, 67663
Kaiserslautern, Germany
‡Department of Food Chemistry and Toxicology, University of Vienna, W€ahringerstrasse 38, A-1090 Vienna, Austria
§Section of Food Toxicology, Institute of Applied Biosciences, Karlsruher Institut f€ur Technologie, Adenauerring 20, 76131 Karlsruhe,
Department of Safety and Quality of Fruit and Vegetables and ^Department of Physiology and Biochemistry of Nutrition, Max Rubner-
Institute, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany



ABSTRACT:In the present study, we addressed the question whether cyanidin-3-glucoside (C3G) or complex C3G-rich blackberry extracts affect human topoisomerases with special emphasis on the contribution of the potential degradation products phloroglucinol aldehyde (PGA) and protocatechuic acid (PCA). In HT29 colon carcinoma cells a C3G-rich blackberry extract suppressed camptothecin- (CPT-) or doxorubicin- (DOX-) induced stabilization of the covalent DNAtopoisomerase intermediate, thus antagonizing the effects of these classical topoisomerase poisons on DNA integrity. As a single compound, C3G (100μM) decreased the DNA-damaging effects of CPT as well, but did not significantly affect those induced by DOX. At the highest applied concentration (100 μM), cyanidin protected DNA from CPT- and DOX-induced damage. Earlier reports on DNAdamaging properties of cyanidin were found to result most likely from the formation of hydrogen peroxide as an artifact in the cell culturemedium when the incubation was performed in the absence of catalase. The suppression of hydrogen peroxide accumulation,achieved by the addition of catalase, demonstrated that cyanidin does not exhibit DNA-damaging properties in HT29 cells (up to 100 μM). The observed effects on topoisomerase interference and DNA protection against CPT or DOX were clearly limited to the parent compound and were not observed for the potential cyanidin degradation products PGA and PCA.

Keywords:DNA damage, topoisomerase, cyanidin, camptothecin, doxorubicin


mail  zghmwhmyj@163.com